





### Módulo 4: Trastornos Neuromotores

#### Andrea Ospina G.

Fisioterapeuta - CES

Magister en Fisioterapia en Pediatría - CES

Diplomada Docencia Universitaria

Diversos cursos de actualización y ponente en jornadas de investigación Medellín

@aquienfisio.co









Introducción
Actividad Inicial

Parálisis Cerebral

Trastornos del Espectro Autista

Actividad colaborativa:
Casos clínicos

Actividad final







#### Hablemos...









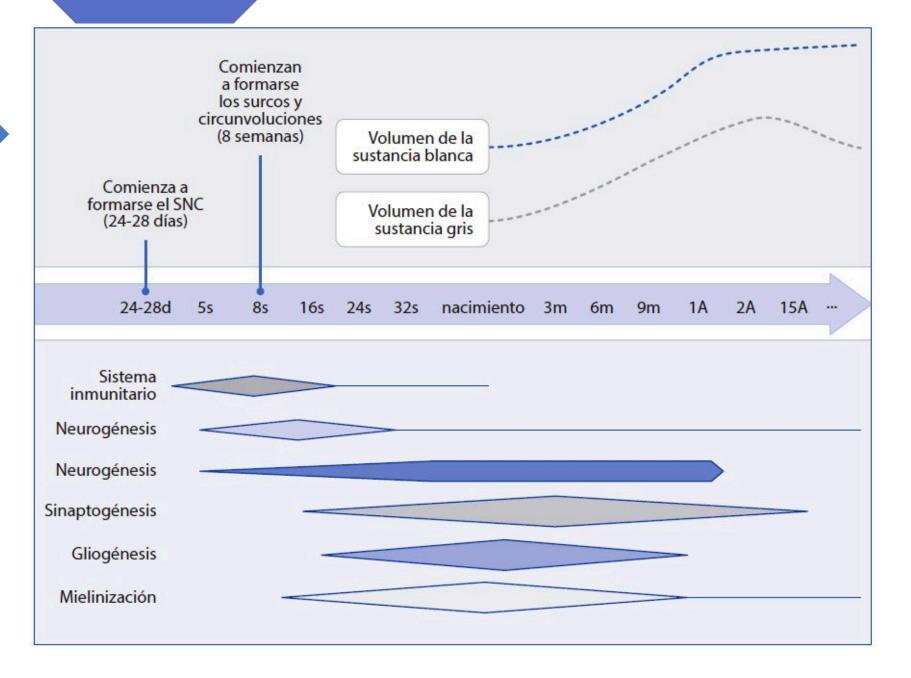
#### Bases teóricas

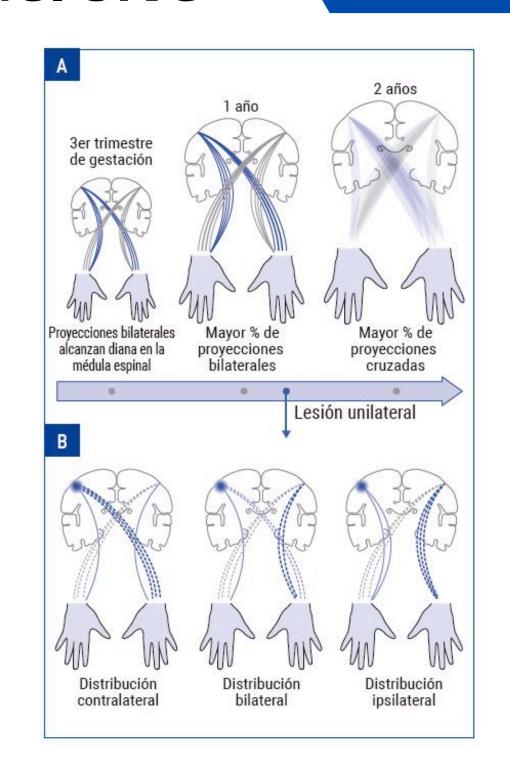






#### Definición


Un trastorno neuromotor es una **alteración del control del movimiento y/o la postura** causada por una <u>disfunción en el sistema nervioso central, periférico, el músculo o la interacción entre ellos.</u> Estas condiciones pueden presentarse de forma congénita o adquirida, **ser estáticas o progresivas,** y afectan la ejecución de actividades motoras, que pueden repercutir en la participación social y la calidad de vida.








#### Proceso madurativo del SNC











#### **Plasticidad Neural**

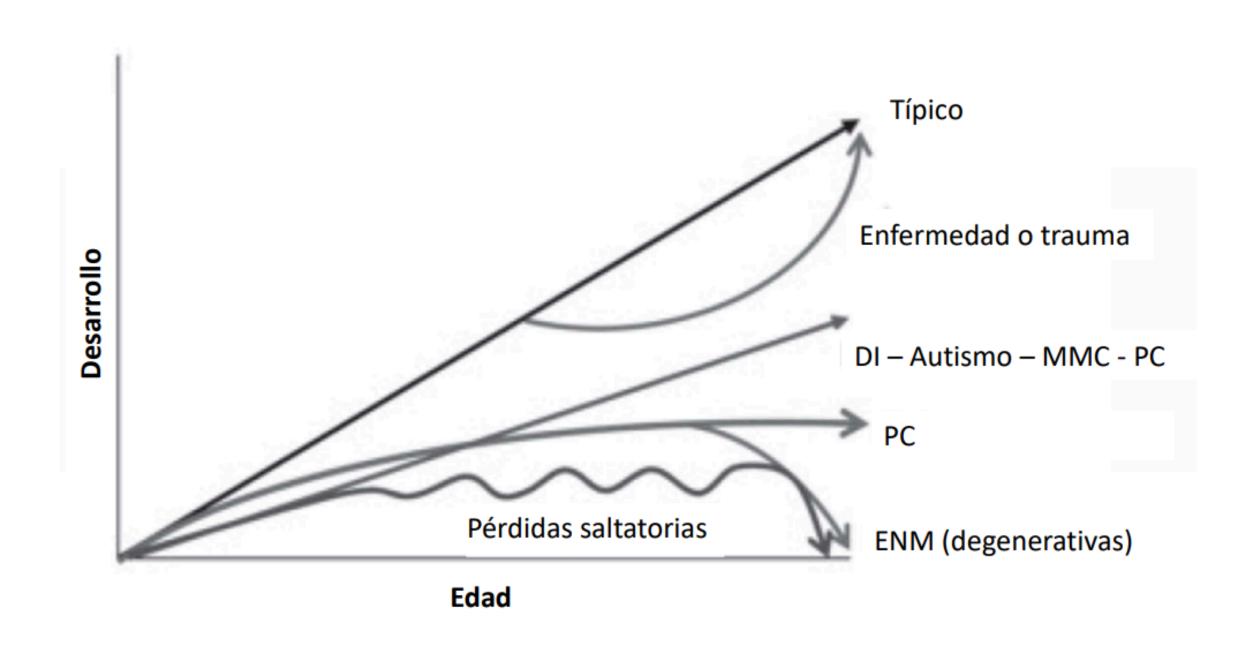
La **neurogénesis** es el proceso por el cual se forman nuevas neuronas.

La **sinaptogénesis** es el procedo donde se da la formación de sinapsis.

La **gliogénesis** es el proceso mediante el cual se forman las células gliales en el sistema nervioso. (Apoyan, protegen y mantienen a las neuronas saludables y funcionando correctamente)

La **mielinización** es el proceso mediante el cual se forma una capa llamada mielina alrededor de las fibras nerviosas (axones) en el sistema nervioso que funciona como un aislante eléctrico, permitiendo que los impulsos nerviosos se transmitan de forma más rápida y eficiente entre las neuronas.

Plasticidad del desarrollo

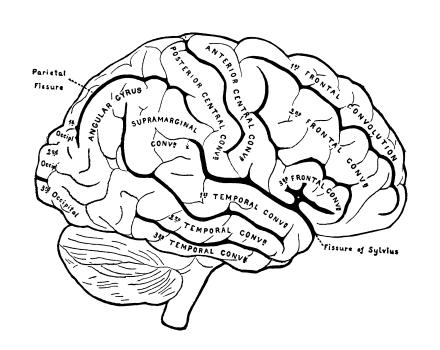

Plasticidad Adaptativa

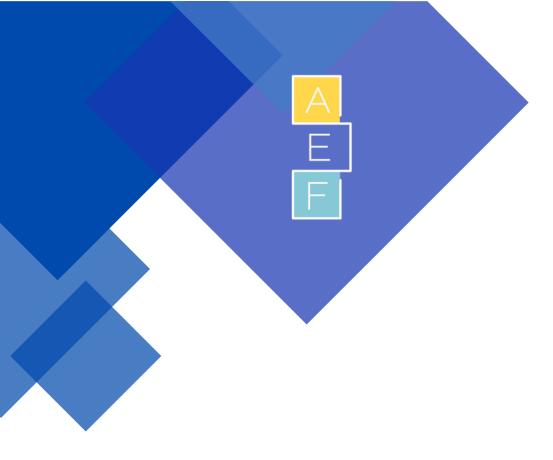
Plasticidad reactiva







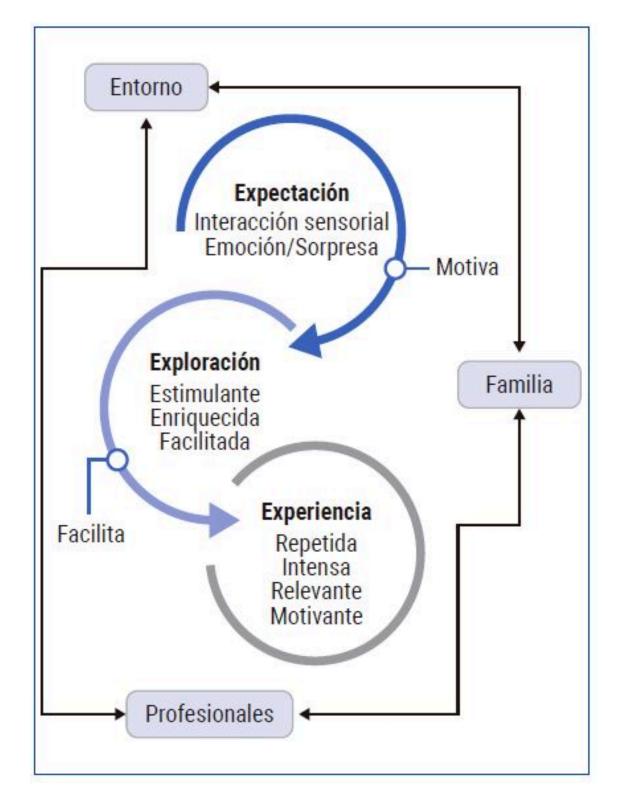




fisioterapéuticas en el SNC





#### El tiempo es clave para influir de forma óptima en el sistema nervioso central






#### Las 3 E

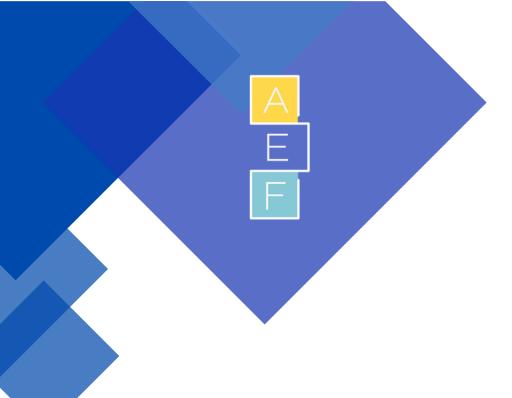






| Origen     | Momento de aparición | Curso clínico | Ejemplos                                                                            |
|------------|----------------------|---------------|-------------------------------------------------------------------------------------|
|            | Congénito            | No progresivo | - Parálisis cerebral - TEA con<br>afectación motora                                 |
| Central    | Adquirido            | No progresivo | - Lesión medular traumática -<br>Accidente cerebrovascular infantil                 |
|            | Adquirido            | Progresivo    | - Esclerosis múltiple pediátrica<br>(formas infantiles)                             |
|            | Congénito            | Progresivo    | - Atrofia muscular espinal (AME) tipo<br>l y ll                                     |
| Periférico | Adquirido            | No progresivo | - Lesión traumática de nervio<br>periférico                                         |
|            | Adquirido            | Progresivo    | - Polineuropatías inflamatorias<br>crónicas                                         |
|            | Congénito            | Progresivo    | - Distrofia muscular de Duchenne -<br>Distrofias musculares congénitas              |
| Miopático  | Adquirido            | No progresivo | - Miopatías por traumatismo<br>muscular                                             |
|            | Adquirido            | Progresivo    | - Miopatías inflamatorias<br>(polimiositis, dermatomiositis) -<br>Miopatías tóxicas |

| Característica            | Motoneurona Superior (MNS)                                | Motoneurona Inferior (MNI)                                         |
|---------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
| Localización de la lesión | Corteza motora, cápsula interna, tractos corticoespinales | Motoneurona alfa en médula espinal o nervio periférico             |
| Ejemplos clínicos         | Parálisis cerebral                                        | AME, distrofias musculares                                         |
| Tono muscular             | Aumentado (espasticidad)                                  | Disminuido (hipotonía)                                             |
| Reflejos                  | Hiperreflexia, clonus, signo de Babinski                  | Arreflexia o hiporreflexia                                         |
| Masa muscular             | Conservada inicialmente, atrofia tardía por desuso        | Atrofia rápida y marcada                                           |
| Patrón de debilidad       | Distribución característica según tractos afectados       | Debilidad localizada en músculos inervados por la neurona afectada |


| Característica   | Parálisis Cerebral (PC)                                | Atrofia Muscular Espinal<br>(AME)                              | Distrofia Muscular (DM)                                    | Trastorno del Espectro<br>Autista (TEA)                               |
|------------------|--------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|
| Etiología        | Lesión no progresiva en cerebro en desarrollo          | Enfermedad genética<br>autosómica recesiva (SMN1)              | Mutaciones genéticas<br>(distrofina)                       | Multifactorial, genética y<br>ambiental                               |
| Edad de inicio   | Prenatal, perinatal o < 2 años                         | Infancia temprana (meses-<br>años)                             | Infancia (Duchenne: 2-5<br>años)                           | Antes de los 3 años (signos iniciales)                                |
| Signos de alerta | Hipertonía, retraso motor, reflejos anormales          | Hipotonía, debilidad<br>proximal, fasciculaciones en<br>lengua | Debilidad progresiva, marcha<br>de pato, signo de Gowers   | Retraso en lenguaje, falta de<br>contacto visual, juego<br>repetitivo |
| Evolución        | Estable, pero con riesgo de complicaciones secundarias | Progresiva, pérdida de fuerza<br>y función motora              | Progresiva, pérdida funcional<br>y compromiso respiratorio | Variable, algunos con<br>mejoría con intervención<br>temprana         |
| Pronóstico       | Depende del tipo y nivel funcional                     | Sin tratamiento específico,<br>limitaciones severas            | Acorta expectativa de vida (Duchenne: ~20-30 años)         | Mejora con intervención<br>adaptada e intensiva                       |





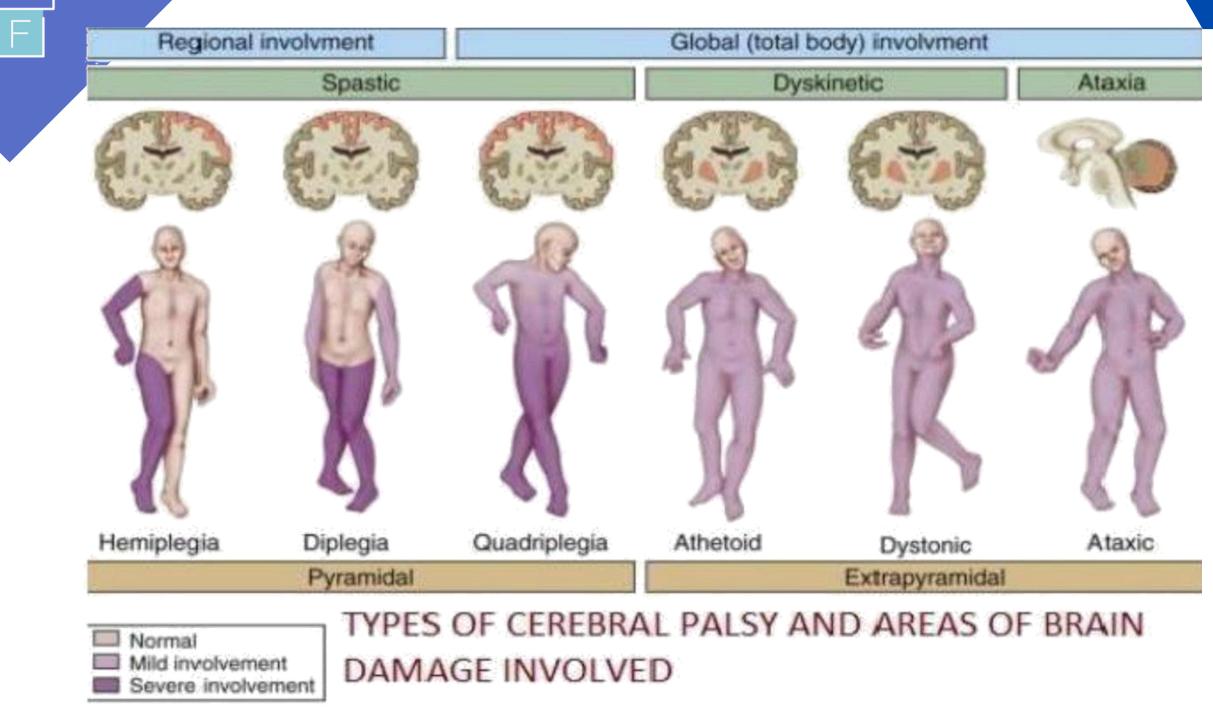


# Parálisis Cerebral Un abordaje Funcional








#### Definición

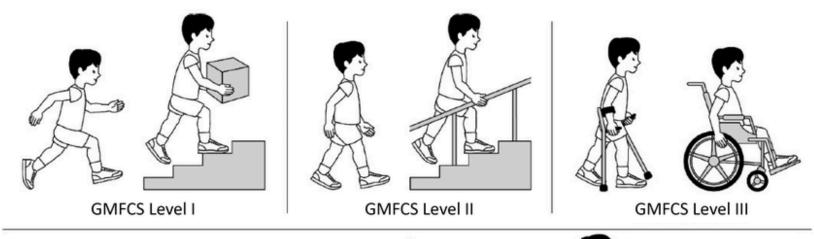
La Parálisis Cerebral (PC) es un grupo de **transtornos del desarrollo del movimiento y la postura** con limitación de la actividad, y como resultado de una **lesión no progresiva** que ha ocurrido en el cerebro de un bebé durante el parto o durante los primeros dos años de vida.

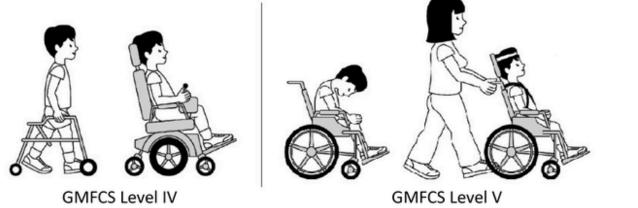
Los transtornos motores de la parálisis cerebral, están a menudo, acompañados de alteraciones de la sensibilidad, la cognición, la comunicación, la percepción, el comportamiento y/o epilepsia.












#### Sistemas de Clasificación de la PC

**Gross Motor Function Classification System** (GMFCS)





Manual Ability Classification System (MACS)

**Communication Function Classification System** 

Sistema de Clasificación de la Función Visual para niños con parálisis cerebral: desarrollo y validación

Giovanni Baranello <sup>1</sup> <sup>2</sup>, Sabrina Signorini <sup>3</sup>, Francesca Tinelli <sup>4</sup>, Andrea Guzzetta <sup>4</sup>, Emanuela Pagliano <sup>1</sup>, Andrea Rossi <sup>5</sup>, María Foscán <sup>1</sup>, Irene Tramacere <sup>6</sup>, Domenico MM Romeo <sup>7</sup>, Daniela Ricci <sup>8</sup>; Grupo de estudio VFCS



Factores

**Ambientales** 



Posture and Postural Ability Scale (PPAS)

**STANDING** 



GMFCS Level: I II III IV V

#### Escalas de Valoración/Evaluación

#### **Gross Motor Function Measure (GMFM)**

**Factores** 

Personales

The Gross Motor Function Measure (GMFM) is a clinical tool designed to evaluate change in gross motor function in children with cerebral palsy.

Home » Resources » Gross Motor Function Measure (GMFM)

# PEDI and the PEDI-CAT The PEDI (Pediatric Evaluation of Disability Inventory), is an interview-based assessment that can be used to monitor the self-care, mobility and social abilities of a person with cerebral palsy. In this assessment, the parent or care giver answers questions about the person's performance in these aspects of life. There are two versions of this assessment widely used in clinical practice today: The Quality of Life Scale (QOLS): Reliability, Validity, and Utilization

Carol S Burckhardt <sup>1,™</sup>, Kathryn L Anderson <sup>2</sup>

Hammersmith Functional Motor Scale for SMA (HFMS)

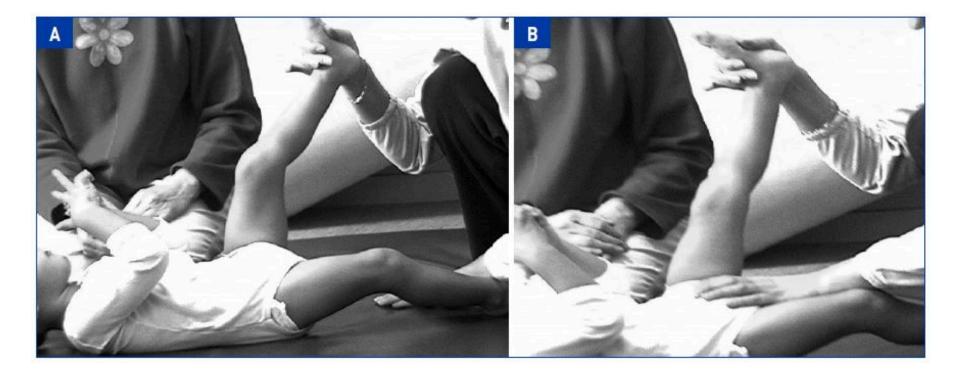
With add-on module presented by PNCR - Expanded Hammersmith Functional Motor Scale (HFMSE)

#### EXAMEN NEUROLÓGICO PARA NIÑOS Y NIÑAS 2-24 MESES – HAMMERSMITH INFANT NEUROLOGICAL EXAMINATION

| Nombre:          | Nº de Historia Clínica: | Fecha de nacimiento:        |    |
|------------------|-------------------------|-----------------------------|----|
| Edad gestacional | : Fecha de exa          | men:                        |    |
| Edad Cronológic  | a: Corregida: P         | erímetro cefálico: Percenti | l: |
| Examinador:      |                         |                             |    |








#### ESCALA MODIFICADA DE ASHWORTH (MAS)

| 0  | Sin incremento del tono muscular.                                                                                                                                                              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Leve incremento del tono muscular debido a una resistencia mínima al final del arco de movimiento.                                                                                             |
| 1+ | Leve incremento del tono muscular caracterizado por una breve parada seguido de una mínima resistencia a través del resto del arco de movimiento (en menos de la mitad): "signo de la navaja". |
| 2  | Marcado incremento del tono muscular a través de todo el arco de movimiento, pero la articulación se mueve fácilmente aún.                                                                     |
| 3  | Considerable incremento del tono muscular, que dificulta el movimiento pasivo.                                                                                                                 |
| 4  | Rigidez del segmento afectado, en flexión o extensión.                                                                                                                                         |

#### ESCALA DE TARDIEU

| 0 | No resistencia a través del curso de estiramiento.                     |
|---|------------------------------------------------------------------------|
| 1 | Resistencia escasa a un ángulo específico a través del curso del       |
|   | estiramiento sin evidente contracción muscular.                        |
| 2 | Evidente contracción muscular a un ángulo específico, seguido de       |
|   | relajación por interrupción del estiramiento.                          |
| 3 | Clonus que aparece a un ángulo específico que dura menos de 10         |
|   | segundos cuando el evaluador está haciendo presión contra el músculo.  |
| 4 | Clonus que aparece en un ángulo específico que dura más de 10 segundos |
|   | cuando el evaluador está haciendo presión contra el músculo.           |



- Movimiento V1 tan lento como sea posible.
- Movimiento V2 velocidad de la extremidad que cae bajo la gravedad.
- 3. Movimiento V3 lo más rápido posible.



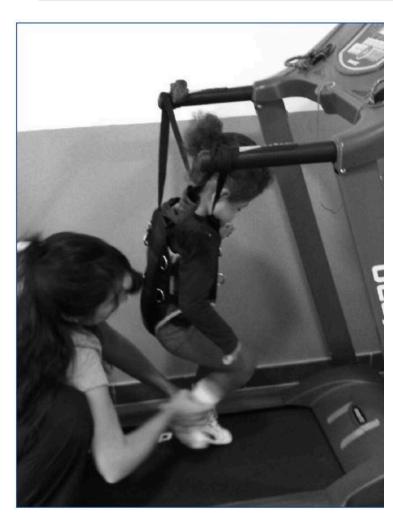


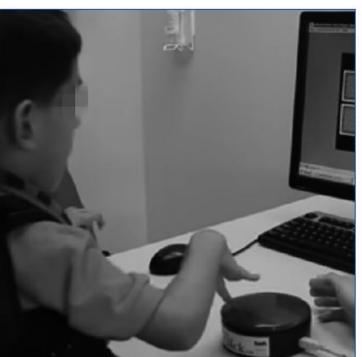


## Estrategias terapéuticas





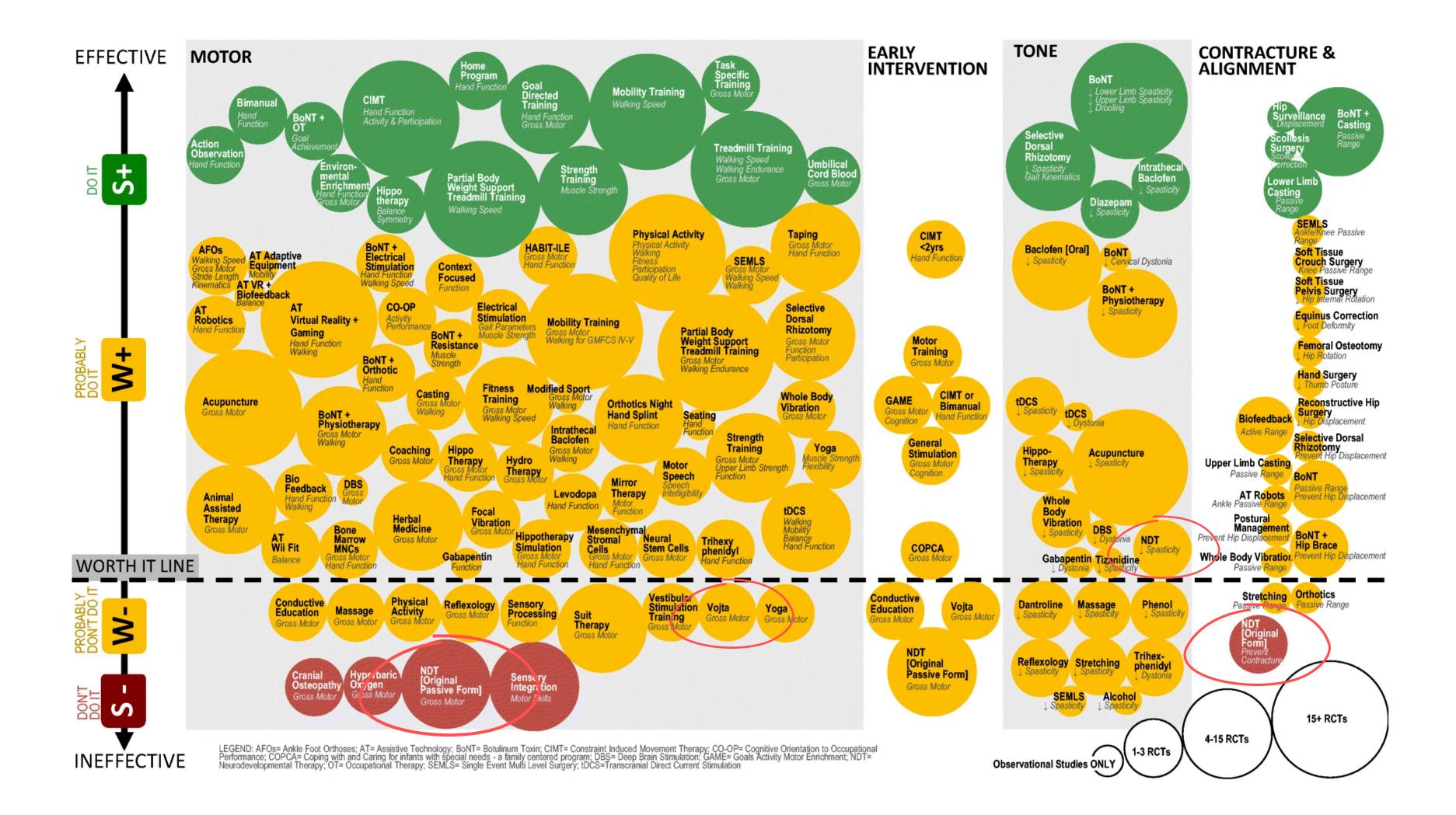


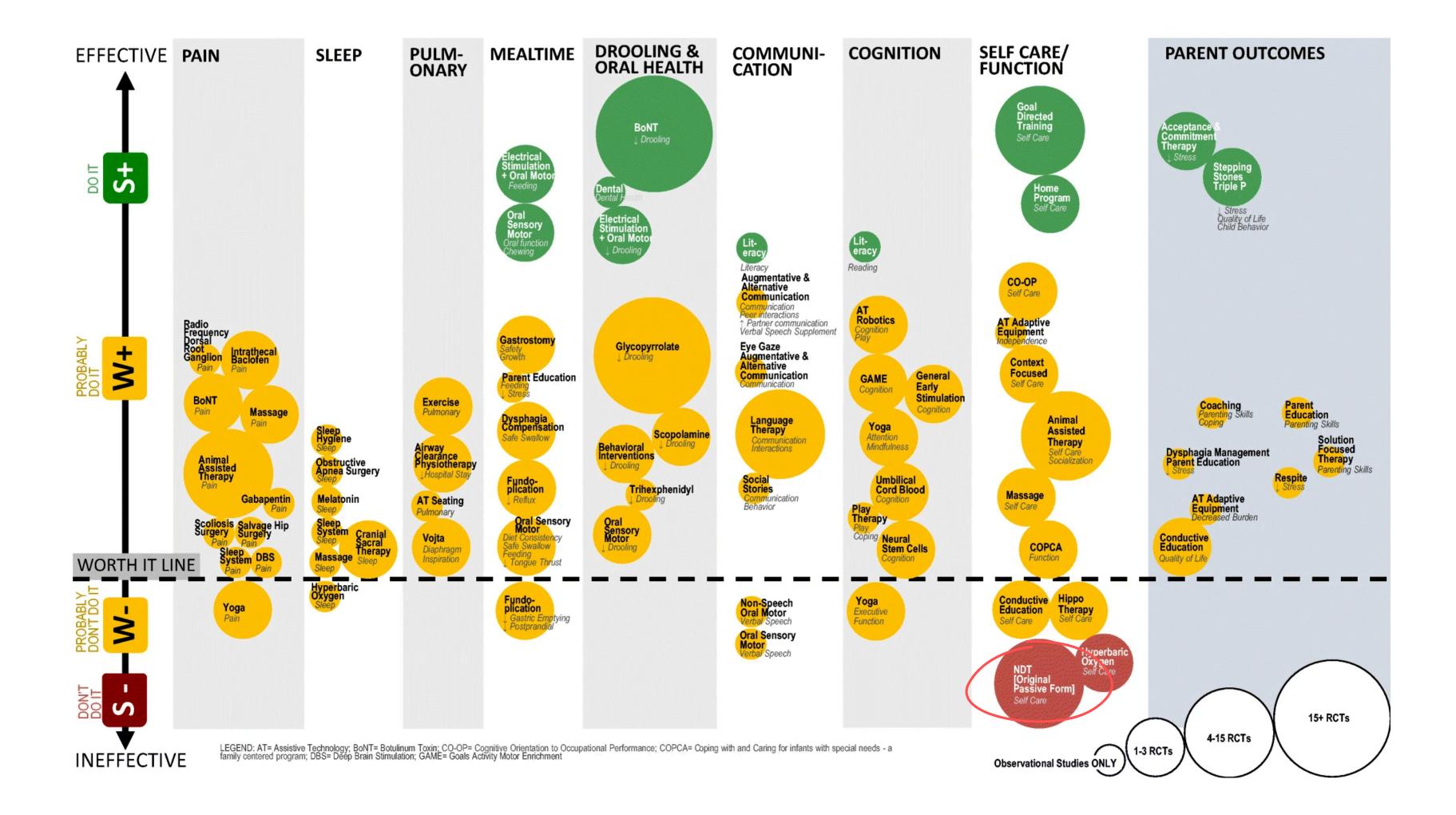


























# **Enfermedades Neuromusculares**







#### Definición

Las ENM denominadas como enfermedades raras por su baja incidencia en la población, son un conjunto de alteraciones que afectan a alguno de los componentes del sistema neuromuscular: Asta anterior de la médula, nervios periféricos, placa motora o músculo. Se trata de **patologías crónicas y degenerativas** que la mayor mayoría tienen su inicio en la infancia temprana y sus secuelas se prolongan a lo largo de la vida.

| Sitio de afectación                | Patología                                                                | Edad típica de inicio           | Signos clínicos clave                                                                        |  |
|------------------------------------|--------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------|--|
|                                    | Atrofia muscular espinal (AME)<br>tipos 1–3                              | Lactante a niñez temprana       | Hipotonía, debilidad proximal, retraso<br>motor, fasciculaciones linguales                   |  |
| Asta anterior de la médula espinal | Poliomielitis                                                            | Niñez (en no vacunados)         | Debilidad flácida asimétrica,<br>arreflexia, fatiga                                          |  |
|                                    | Neuropatías hereditarias y adquiridas (cmt)                              | Niñez                           | Debilidad y atrofia distal a nivel de los<br>brazos y musculatura intríseca de los<br>pies.  |  |
|                                    | Miastenia gravis congénita / juvenil                                     | Desde nacimiento o adolescencia | Fatiga fluctuante, ptosis, debilidad proximal, disartria                                     |  |
| Unión neuromuscular                | Botulismo infantil                                                       | < 1 año                         | Hipotonía generalizada, succión débil, constipación, debilidad progresiva                    |  |
|                                    | Distrofia muscular de Duchenne                                           | 2–5 años                        | Debilidad proximal, signo de Gowers,<br>marcha de pato, pseudohipertrofia de<br>pantorrillas |  |
|                                    | Distrofia muscular de Becker                                             | 5–15 años                       | Similar a Duchenne pero más lento en progresión                                              |  |
| Músculo                            | Distrofias de cinturas (formas infantiles)                               | Infancia                        | Debilidad pélvica y escapular progresiva                                                     |  |
|                                    | Distrofia facioescapulohumeral                                           | Adolescencia                    | Debilidad facial, escapular y braquial, dificultad para levantar brazos                      |  |
|                                    | <b>Miopatías congénitas</b> (central core, nemalínica, miotubular, etc.) | Recién nacido a infancia        | Hipotonía, debilidad generalizada, retraso motor                                             |  |



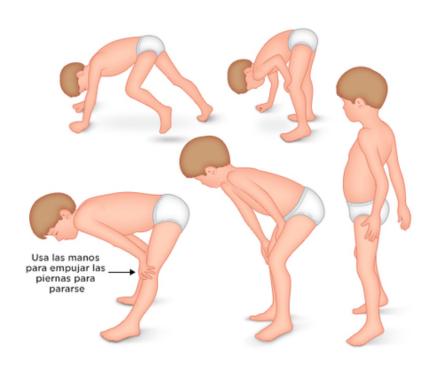




### Atrofia Muscular Espinal

Las ENM denominadas como enfermedades raras por su baja incidencia en la población, son un conjunto de alteraciones que afectan a alguno de los componentes del sistema neuromuscular: Asta anterior de la médula, nervios periféricos, placa motora o músculo. Se trata de **patologías crónicas y degenerativas** que la mayor mayoría tienen su inicio en la infancia temprana y sus secuelas se prolongan a lo largo de la vida.

| Tipo       | Edad aparición   | Edad diagnosticada         | Edad diagnosticada Características clínicas                                                                                                                                                                 |                                                             |
|------------|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 0          | Fetal            | Nacimiento                 | Poco movimiento en las extremidades, cara y tronco.<br>No succiona, arreflexia, contracturas congénitsa,<br>necedidad de ventilación mecánica al nacer                                                      | Nula                                                        |
| 1A         | Fetal            | Primeras 2 semanas de vida | Hipottonía generalizada, debilidad en las extremidades<br>y cuello Arrefléxia, lengua fasciculación, jadeo,<br>necesidad de ventilación mecánica al nacer                                                   | Nula                                                        |
| 1B         | Infancia         | Hacia 3 meses de edad      | Hipotonía severa generalizada, debilidad en las extremidades y cuello Arrefléxia, tórax en forma de campana, patrón de respiración paradójica.                                                              | No hay rolados ni sendente<br>independiente                 |
| 2          | Infancia         | 3-6 meses                  | Hiportonúa frace generalizada, debilidad de predominio proxima, predominio miembros inferiores sobre superiores. Control cefálico, Arrefléxia, tórax en forma de campana, patrón de respiración paradójica. |                                                             |
| 3 <b>A</b> | Primera infancia | 6-18 meses                 | Hipotonía leve- moderada. Debilidad predominio<br>proximal a distal, MMIII > MMSS> tronco. Arreflexia.<br>Mioclonus en dedos                                                                                | Marcha, no logra correr o<br>saltar                         |
| 3B         | Final infancia   | 3-10 años                  | Estabilidad en el desarrollo motor. Los reflejos<br>reducidos o ausentes. La mayorían pierden<br>deambulación antes o alrededor de la pubertad                                                              | Marcha, corre, salta y puede<br>participar en algún deporte |
| 4          | Adulto           | 35 +                       | Disminución más lenta de la función motora grusa                                                                                                                                                            | Normal hasta los primeros<br>años de adulto                 |



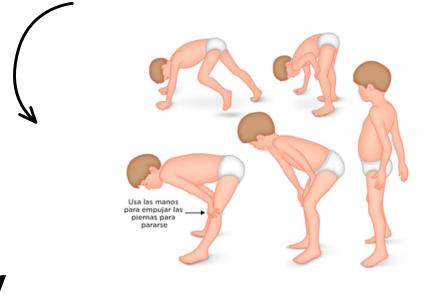





# Distrofias Musculares y miopatías congénitas

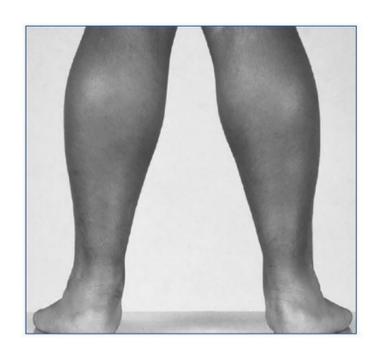
Son un grupo de **enfermedades genéticas progresivas** que afectan el músculo esquelético, caracterizadas por la degeneración y debilidad muscular debidas a alteraciones en proteínas estructurales o funcionales de la fibra muscular..




| Tipo de distrofia muscular                                     | Edad de inicio                                     | Patrón de herencia                                                                 | Características clínicas<br>principales                                                                                                                            | Evolución                                                                                        |
|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Distrofia muscular de<br>Duchenne (DMD)                        | 2–5 años                                           | Recesiva ligada al X (gen DMD, distrofina)                                         | Debilidad proximal progresiva (cintura pélvica), signo de Gowers, marcha de pato, pseudohipertrofia de gemelos, retraso motor. Compromiso cardiaco y respiratorio. | Rápidamente progresiva,<br>pérdida de la marcha ~10–12<br>años, expectativa de vida<br>reducida. |
| Distrofia muscular de<br>Becker (DMB)                          | 5–15 años (puede ser más tarde)                    | Recesiva ligada al X (gen DMD, distrofina parcial)                                 | Similar a DMD pero más leve y progresión más lenta.                                                                                                                | Lenta, muchos mantienen la<br>marcha hasta la adultez joven.                                     |
| Distrofia muscular<br>congénita (DMC)                          | Desde el nacimiento o primeros meses               | Variada: autosómica recesiva<br>(laminina-α2, colágeno VI, etc.)                   | Hipotonía neonatal, retraso<br>motor, debilidad generalizada,<br>contracturas. Algunos<br>subtipos con afectación ocular<br>o cerebral.                            | Variable: desde estable hasta<br>progresiva, depende del<br>subtipo genético.                    |
| Distrofia muscular<br>facioescapulohumeral<br>(FSHD)           | Infancia o adolescencia (forma infantil más grave) | Autosómica dominante<br>(deleción en 4q35)                                         | Debilidad facial, escapular y<br>humeral; dificultad para cerrar<br>ojos, elevar brazos.                                                                           | Lenta, puede estabilizarse por periodos.                                                         |
| Distrofia muscular de<br>cinturas (LGMD, formas<br>infantiles) | Infancia o adolescencia                            | Generalmente autosómica<br>recesiva (defectos en<br>sarcoglicanos, calpaína, etc.) | Debilidad proximal en cintura<br>pélvica y escapular, dificultad<br>para correr o subir escaleras,<br>posible compromiso cardiaco.                                 | Variable, algunas formas son<br>rápidas, otras lentas.                                           |
| Distrofia miotónica<br>congénita                               | Desde el nacimiento                                | Autosómica dominante<br>(expansión CTG en DMPK)                                    | Hipotonía grave al nacer,<br>debilidad facial, problemas<br>respiratorios, retraso motor;<br>en formas leves aparece<br>miotonía más tarde.                        | Puede mejorar en la infancia,<br>pero suele haber debilidad<br>residual.                         |



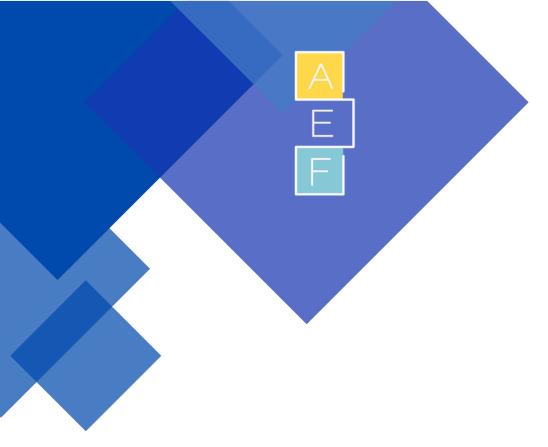
#### Fase de marcha autónoma








Fase de debilidad muscular y aparición de acortamientos musculares








Fase de silla de ruedas





#### Escalas de valoración

March 29





Hammersmith
Functional Motor Scale
Expanded for SMA
(HFMSE)

2019

#### EXAMEN NEUROLÓGICO PARA NIÑOS Y NIÑAS 2-24 MESES – HAMMERSMITH INFANT NEUROLOGICAL EXAMINATION

| Nombre:           | Nº de Historia Clír | nica: Fec   | ha de nacim | iento:     |         |
|-------------------|---------------------|-------------|-------------|------------|---------|
| Edad gestacional: | Fecha               | de examen:  |             |            |         |
| Edad Cronológic   | a: Corregida:       | Perímetro   | cefálico:   | Percentil: |         |
| Examinador:       |                     |             |             |            |         |
|                   |                     | Puntuacion  | nes         |            |         |
| Pares craneales   | Postura             | Movimientos | Tono        | Reflejos   | Total   |
| Máx. 15           | Máx. 18             | Máx. 6      | Máx. 24     | Máx. 15    | Máx. 78 |
|                   |                     |             |             |            |         |

Asimetrías:

Puntuación conducta (no se incluye en la puntuación general):

Otros comentarios

(durante al examen, si alguna respuesta no es óntima, pero tampoco suficientemente mala como para puntuar 1, quede puntuarse como 2)

#### PARES CRANEALES

|                                               | 3 puntos | 2 ptos | 1 punto                  | 0 puntos            | A | Comentarios |
|-----------------------------------------------|----------|--------|--------------------------|---------------------|---|-------------|
| Apariencia facial<br>(en reposo y al llorar o |          |        | Cierra los ojos, pero no | Facies inexpresiva. |   |             |

Revised Upper Limb Module for SMA (RULM)



Prueba de trastornos neuromusculares para pacientes en edad infantil del Children's Hospital of Philadelphia (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders, CHOP INTEND) Manual de procedimientos





#### Escalas de valoración





**>** J Neurol. 2015 Oct;262(10):2225-31. doi: 10.1007/s00415-015-7836-y. Epub 2015 Jul 4.

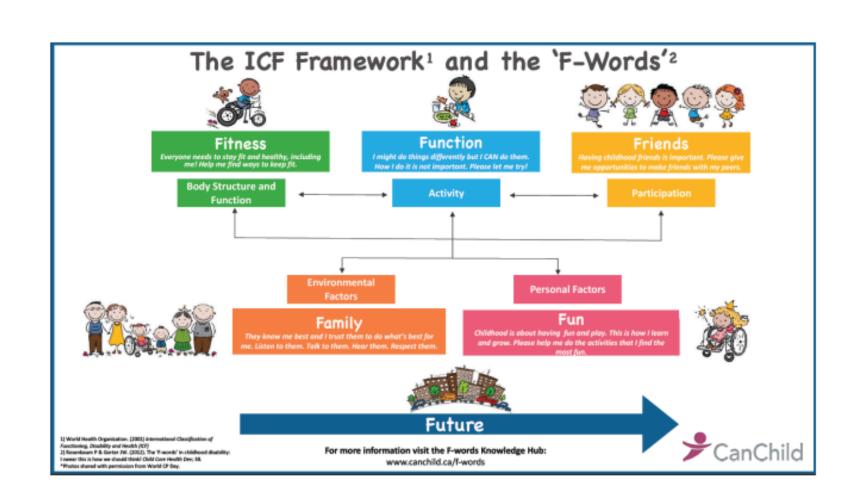
Development of a new scale for dysphagia in patients with progressive neuromuscular diseases: the Neuromuscular Disease Swallowing Status Scale (NdSSS)

> Heart Lung. 2007 Mar-Apr;36(2):132-9. doi: 10.1016/j.hrtlng.2006.07.006.

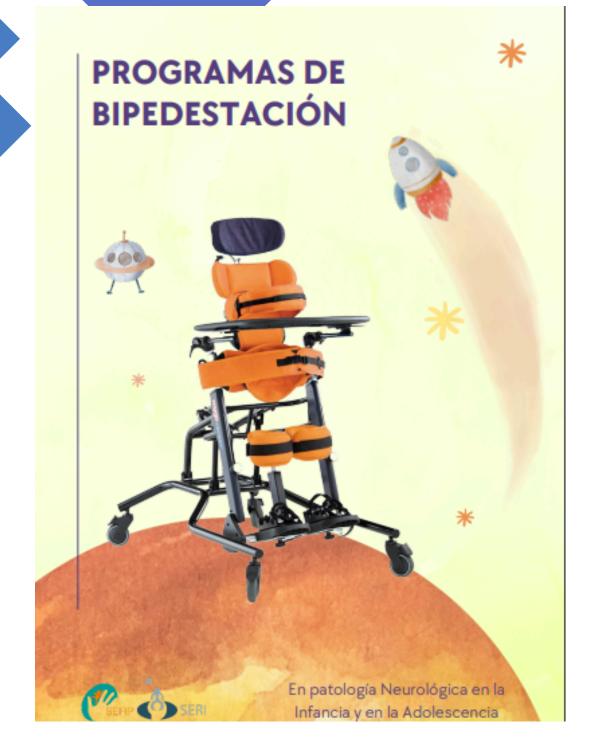
Correlations of Egen Klassifikation and Barthel Index scores with pulmonary function parameters in Duchenne muscular dystrophy

> Med Care. 1999 Feb;37(2):126-39. doi: 10.1097/00005650-199902000-00003.

The PedsQL: measurement model for the pediatric quality of life inventory




#### Abordaje terapéutico






- 1. Mejorar, mantener o retardar pérdida de fuerza muscular
- 2. Evitar/ reducir contracturas o defomidades
- 3. Promover/ mantener y prolongar marcha
- 4. Mantener/mejorar función respiratoria
- 5. Favorecer la independencia y las funciones físcas
- 6. Promover actividades lúdicas, deportivas y de participación social



















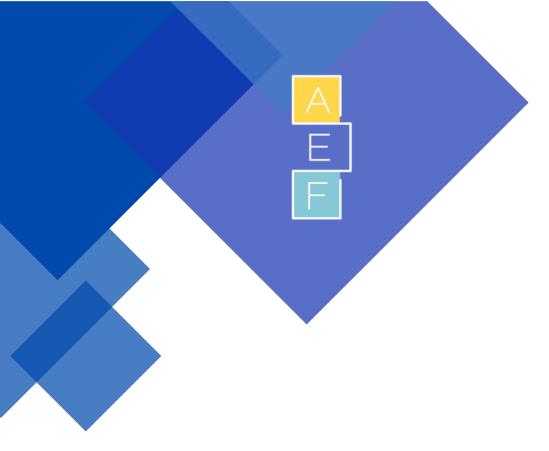






# Trastornos del Espectro Autista Un abordaje multidisciplinario








#### Definición

El Trastorno del Espectro Autista (TEA) es un trastorno del neurodesarrollo caracterizado por dificultades persistentes en la comunicación social y en la interacción social en diversos contextos, junto con patrones restrictivos y repetitivos de comportamiento, intereses o actividades. Se manifiesta desde etapas tempranas del desarrollo, aunque en algunos casos los síntomas pueden no ser plenamente evidentes hasta que las demandas sociales superan las capacidades del niño. El grado de severidad es variable y **puede acompañarse de alteraciones sensoriales, cognitivas o motoras.** 

| Criterio                                                 | Descripción resumida                                                                                                               | Ejemplos clínicos                                                                                  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| A. Déficits en comunicación e interacción social         | Presencia de dificultades persistentes en la reciprocidad social, comunicación no verbal y desarrollo/mantenimiento de relaciones. | No responde al nombre, evita contacto visual, no comparte intereses, dificultad para hacer amigos. |
| B. Patrones restrictivos y repetitivos de comportamiento | Al menos 2 de: movimientos repetitivos, insistencia en rutinas, intereses restringidos, alteraciones sensoriales.                  |                                                                                                    |
| C. Inicio temprano                                       | Síntomas presentes desde la infancia, aunque pueden ser más evidentes con el aumento de demandas sociales.                         | Padres notan falta de balbuceo o juego compartido antes de los 2 años.                             |
| D. Impacto funcional                                     | Los síntomas causan deterioro significativo en la vida diaria.                                                                     | Dificultad para participar en actividades escolares o comunitarias.                                |
| E. No explicado por otro diagnóstico                     | No se debe principalmente a discapacidad intelectual (aunque puede coexistir).                                                     | Se realiza evaluación diferencial para descartar otras causas.                                     |



#### Pediatría Atención Primaria

versión impresa ISSN 1139-7632

Rev Pediatr Aten Primaria vol.16 no.61 Madrid mar. 2014

https://dx.doi.org/10.4321/S1139-76322014000100016

COLABORACIONES ESPECIALES

Las posibilidades de la fisioterapia en el tratamiento multidisciplinar del autismo

Possibilities of physical therapy in the multidisciplinary treatment of autism







#### Importancia del rol del fisioterapeuta





El tratamiento de los TEA <u>representa una oportunidad emergente</u> para la fisioterapia pediátrica. Estos hechos nos animan, desde la objetivación de la muy escasa presencia del fisioterapeuta en los equipos de tratamiento del niño con TEA, a proponer un proyecto de intervención terapéutica.

Child Observation Data Form (CODF)

Formulario de datos para la observación infantil









#### Los objetivos de una intervención

Plantear una intervención desde la fisioterapia en el tratamiento del niño con TEA supone tener claros unos objetivos, a elaborar dentro del equipo multidisciplinar. Los objetivos específicos que se plantean son:

- Evaluar la respuesta del paciente gracias a la aplicación de un tratamiento de cointervención, y acorde con las características de nuestro entorno.
- Valorar la mejoría de la autonomía a largo plazo del niño con TEA una vez finalizado el tratamiento.
- Valorar posibles complicaciones físicas que puedan disminuir la calidad de vida (deformidades, contracturas, alteraciones de la marcha, estereotipias, etc.), reduciéndolas en la medida de lo posible.
- Estimar la mejoría de aspectos motores ligados a los TEA, para facilitar la autonomía.
- Proponer y promover una nueva vía en la fisioterapia pediátrica en el tratamiento de los TEA.
- Evaluar situaciones de dependencia y las cargas sociales que supone la enfermedad para el niño, la familia y la sociedad; y provocar su disminución como consecuencia de la intervención.
- Fomentar el reconocimiento del rol del fisioterapeuta pediátrico como miembro activo dentro del equipo multidisciplinar encargado del tratamiento integral del niño con TEA.
- Evaluar la aplicación de las propiedades de distintos medios (hidroterapia y masoterapia) en la mejora de las condiciones físicas y vinculares del niño con TEA.
- Objetivar cómo el tratamiento del fisioterapeuta puede ayudar a los resultados del tratamiento de psicomotricidad haciéndolo complementario desde la cointervención.
- Ofrecer una herramienta terapéutica a las escuelas de educación especial que acojan niños con TEA, así como a las correspondientes asociaciones de padres.

Cualquier tratamiento en pacientes con TEA debe ser precoz. Pero no debemos olvidar las demandas de niños en edad escolar y en adolescentes, especialmente en pacientes con TEA de alto rendimiento, y con afectaciones motoras y de la marcha.







- La observación, el análisis y la comprensión de cada síntoma motor o sensorial son fundamentales para la comprensión de los TEA de los niños.
- Estas particularidades o dificultades no son específicas del autismo. Pero en el autismo son más graves debido a su frecuencia, su intensidad, su tenacidad y su carácter invasor de casi todo el funcionamiento psíquico del niño.
- Las alteraciones sensoriales o motoras repercuten negativamente en las relaciones sociales. Provocan rechazo en los compañeros y adultos del entorno.







# Casos clínicos Actividad Colaborativa







# Foro de Preguntas









# iMUCHAS GRACIAS!

@aquienfisio.co







#### Referencias bibliográficas

- 1. Ashwal, S., Russman, B. S., Blasco, P. A., Miller, G., Sandler, A., Shevell, M., & Stevenson, R. (2004). Practice parameter: Diagnostic assessment of the child with cerebral palsy. Neurology, 62(6), 851–863. https://doi.org/10.1212/01.WNL.0000117981.35364.1B
- 2. Oskoui, M., Coutinho, F., Dykeman, J., Jetté, N., & Pringsheim, T. (2013). An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Developmental Medicine & Child Neurology, 55(6), 509–519. https://doi.org/10.1111/dmcn.12080
- 3. Mercuri, E., Darras, B. T., Chiriboga, C. A., Day, J. W., Campbell, C., Connolly, A. M., ... Finkel, R. S. (2018). Nusinersen versus sham control in infantile-onset spinal muscular atrophy. The New England Journal of Medicine, 377(18), 1723–1732. https://doi.org/10.1056/NEJMoa1702752
- 4. Darras, B. T., Monani, U. R., & De Vivo, D. C. (2017). Spinal muscular atrophy. In M. P. Adam et al. (Eds.), GeneReviews® [Internet]. University of Washington. https://www.ncbi.nlm.nih.gov/books/NBK1352/
- 5. Bushby, K., Finkel, R., Birnkrant, D. J., Case, L. E., Clemens, P. R., Cripe, L., ... DMD Care Considerations Working Group. (2010). Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and pharmacological and psychosocial management. The Lancet Neurology, 9(1), 77–93. https://doi.org/10.1016/S1474-4422(09)70271-6
- 6. American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.; DSM-5-TR). American Psychiatric Publishing.
- 7. Zwaigenbaum, L., Bauman, M. L., Choueiri, R., Kasari, C., Carter, A., Granpeesheh, D., ... Wetherby, A. (2015). Early identification and interventions for autism spectrum disorder: Executive summary. Pediatrics, 136(Suppl 1), S1–S9. https://doi.org/10.1542/peds.2014-3667B