

RADIOLOGÍA ORAL Y MAXILOFACIAL

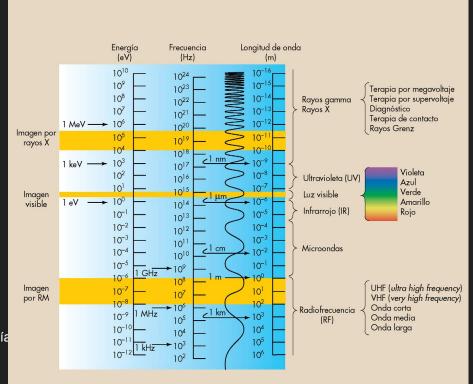
Iván E. Pérez Mg. Esp. Radiologia Oral y Maxilofacial

SESIÓN 1

INTRODUCCIÓN Y PRINCIPIOS DE LA RADIOLOGÍA

Iván E. Pérez Mg. Esp. Radiologia Oral y Maxilofacial

- Wilhelm Roentgen, 8-11-1895.
 Universidad de Würzburg,
 Alemania.
- Experimentando con un tubo de Crookes.



- Fotones (energía electromagnética).
- Viaja a la velocidad de la luz.
- No tiene masa.
- Energía : 10⁴ 10⁵ eV
- Frecuencia: 10¹⁸ 10²⁰ Hz
- Longitud de onda : 10⁻¹⁰ 10⁻¹¹ m.

Dirección con la velocidad de la luz Campo eléctrico (E Campo magnético (B)

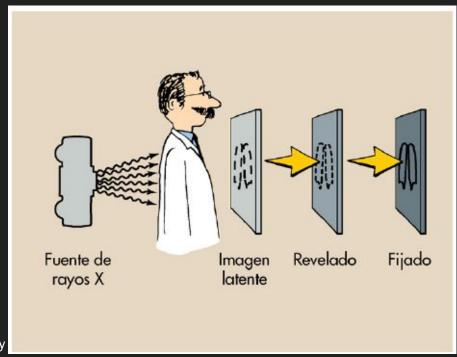
Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y (10^a ed.). Elsevier.

- Fotones (energía electromagnética).
- Viaja a la velocidad de la luz.
- No tiene masa.
- Energía : 10⁴ 10⁵ eV
- Frecuencia: 10¹⁸ 10²⁰ Hz
- Longitud de onda : 10⁻¹⁰ 10⁻¹¹ m.

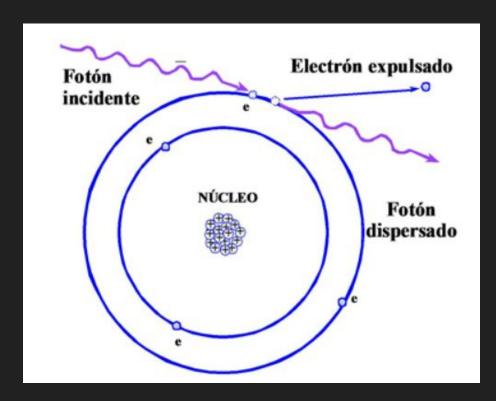
Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología (10ª ed.). Elsevier.

- Características:
 - Capacidad de penetración.
 - o Efecto fotográfico.
 - Efecto fluorescente.
 - o lonización de átomos.
 - Efectos biológicos.

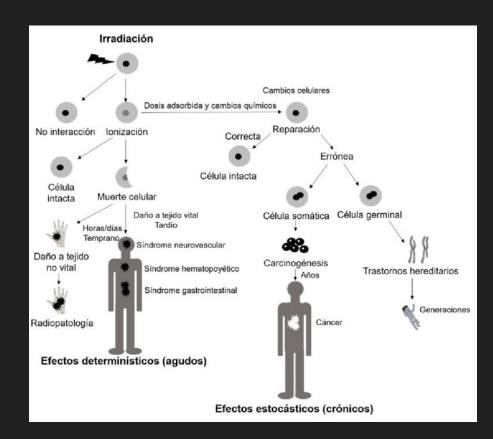
Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biolo (10ª ed.). Elsevier.


- Características:
 - Capacidad de penetración.
 - Efecto fotográfico.
 - Efecto fluorescente.
 - o lonización de átomos.
 - Efectos biológicos.

- Características:
 - Capacidad de penetración.
 - o Efecto fotográfico.
 - Efecto fluorescente.
 - o lonización de átomos.
 - Efectos biológicos.



- Características:
 - Capacidad de penetración.
 - Efecto fotográfico.
 - Efecto fluorescente.
 - lonización de átomos.
 - Efectos biológicos.

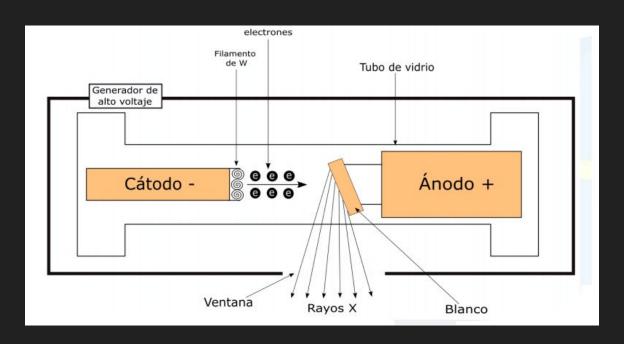


Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y (10ª ed.). Elsevier.

- Características:
 - Capacidad de penetración.
 - o Efecto fotográfico.
 - Efecto fluorescente.
 - lonización de átomos.
 - Efectos biológicos.

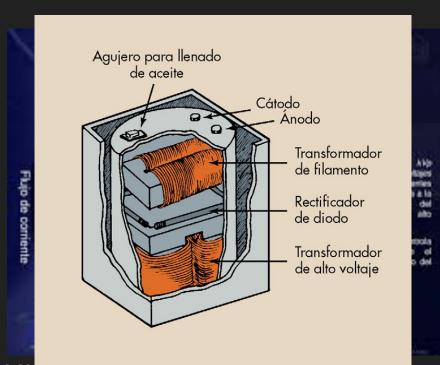
- Características:
 - Capacidad de penetración.
 - Efecto fotográfico.
 - Efecto fluorescente.
 - o lonización de átomos.
 - Efectos biológicos.

TABLA 4-1 Parte del	Parte del amplio intervalo de rayos X producido para aplicación en medicina, investigación e industria				
Tipo de rayos X	Energía aproximada	Aplicación			
Difracción	<10 kVp	Investigación: análisis estructural y molecular			
Rayos Grenz*	10-20 kVp	Medicina: dermatología			
Superficial	50-100 kVp	Medicina: terapia de tejidos superficiales			
Diagnóstico 📥	30-150kVp	Medicina: imágenes de estructuras anatómicas y tejidos			
Ortovoltaje*	200-300 kVp	Medicina: terapia de tejidos internos			
Supervoltaje*	300-1.000 kVp	Medicina: terapia de tejidos internos			
Megavoltaje	>1 MV	Medicina: terapia de tejidos internos			
		Industria: control de integridad de metales soldados			

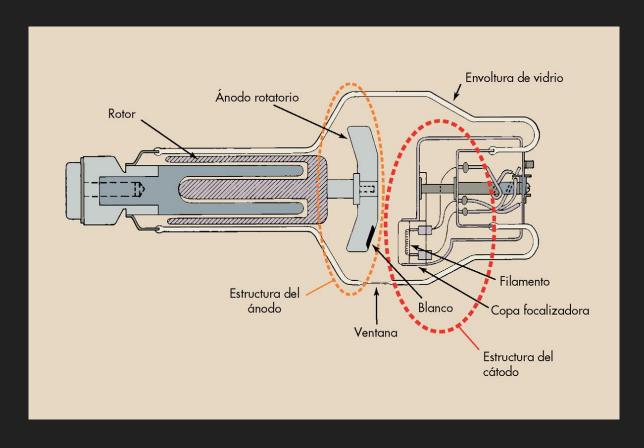

^{*}Estas modalidades de terapia por radiación no se aplican actualmente.

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10^a ed.). Elsevier.

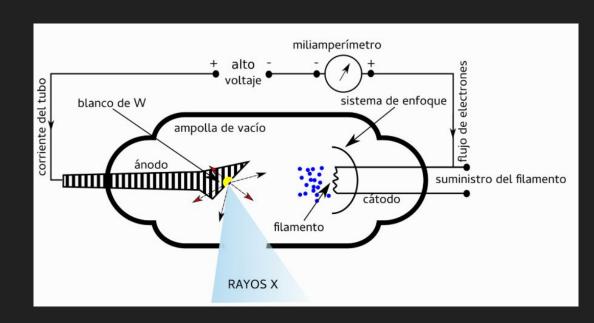
Fenómenos violentos y muy energéticos: restos de explosiones de supernovas, agujeros negros acretando materia, estrellas (neutrones, normales, enanas rojas) y muchos objetos exóticos más. Todos tienen en común que su material está muy caliente, a varios millones de grados de temperatura.



El universo en rayos-X

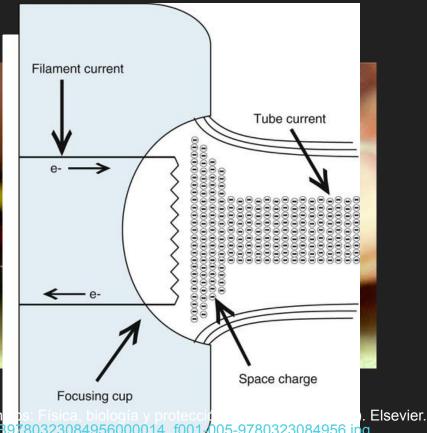


https://images.app.goo.gl/KRDDG367HR3rmgF86


- Establecer una diferencia de voltaje en el orden de KILOVOLTIOS (kVp).
- Elevar el voltaje de 110 220 V hasta un rango de 65-70-120 kVp.
- Disminuir el amperaje de 10 A al rango de 7-10-12 mA.

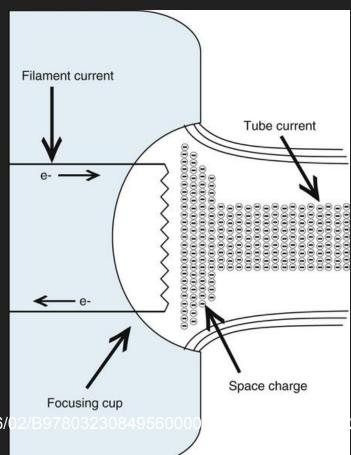
https://images.app.goo.gl/Je2auRBeqrayfeVAA

- Ampolla de vidrio al vacío.
- Cátodo / filamento.
- Ánodo (fijo o rotatorio).
- Punto focal.
- Ventana.
- Filtración de aluminio.



- Ampolla de vidrio al vacío electrónico.
- Hecho de cristal Pyrex para resistir el calor generado.
- Puede soportar más de 150 kV.

Filamento/cátodo.

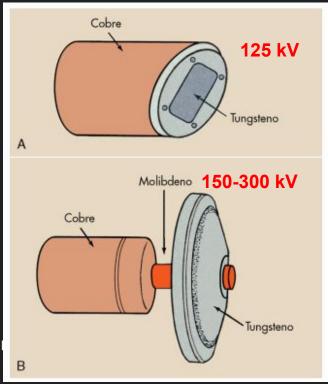

- Emite electrones (emisión termoiónica).
- Tungsteno
 - o 3410° fusión
 - Resistente a la vaporización.
- 2 mm. diámetro / 1-2 cm. de largo.
- ≈ 2200°C

Bushong, S. C. (2013). Manual de radiología para técn https://radiologykey.com/wp-content/uploads/2016/02/EPrimer of Diagnostic Imaging (Fifth Edition), Mosby,201

Filamento/cátodo.

- Emisión termoiónica mA.
- Aceleración kVp (% velocidad de la luz)

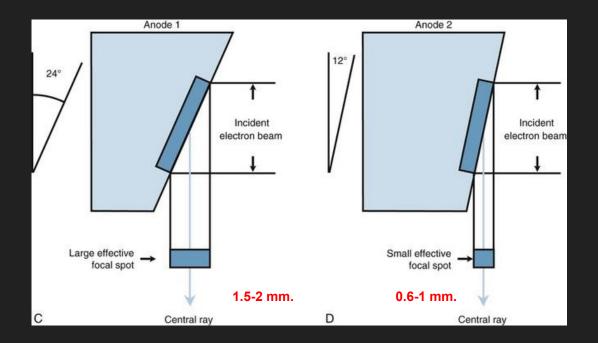
https://radiologykey.com/wp-content/uploads/2016/

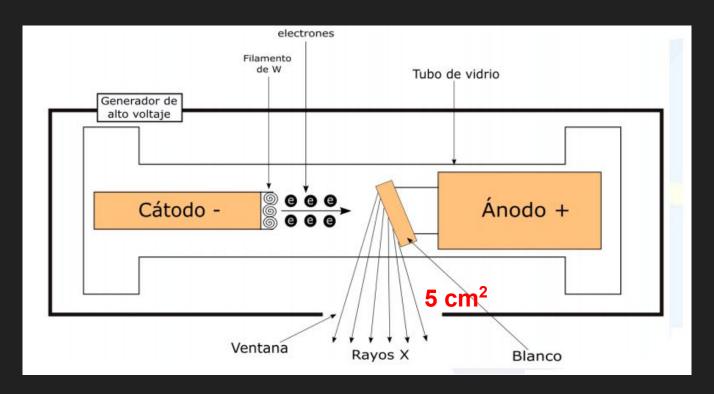

23084956.jpg

✓ Resultados aproximados:						
kVp	Energía (keV)	Velocidad (% c)				
70	70 keV	≈ 47.4 %				
80	80 keV	≈ 50.4 %				
90	90 keV	≈ 52.9 %				
100	100 keV	≈ 55.1 %				

Información generada con asistencia de ChatGPT y revisada por el autor.

Ánodo (+)

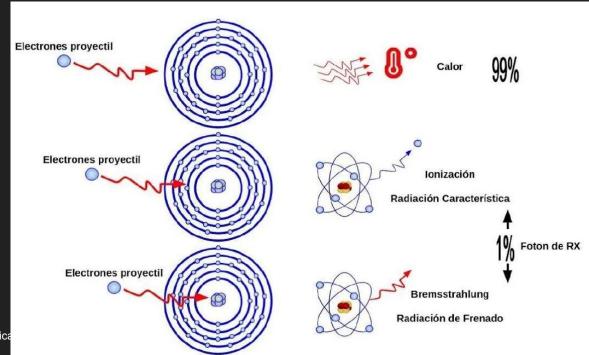

- Tungsteno* "Blanco"
- Rotatorio ó estacionario.
- Conductor eléctrico.
- Disipador térmico (99%).
- Alto Z (74)



Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y $(10^a\ \text{ed.})$. Elsevier.

Ánodo (+)

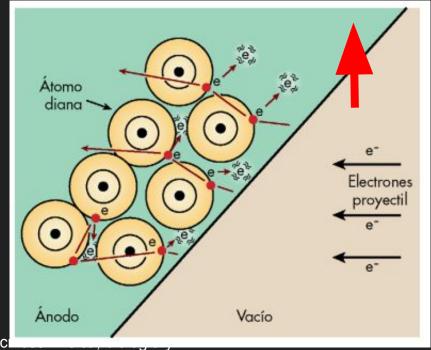
- Punto focal.
 - Menor tamaño/mayor resolución.
 - Mayor calentamiento.
 - Angulación del blanco.


Resumen:

Etapa	Energía involucrada	Resultado
Calentamiento del filamento	Corriente (mA)	Nube de electrones
Aceleración de electrones	Diferencia de potencial (kVp)	Electrones ganan velocidad
Impacto en el ánodo	Energía cinética de electrones	Producción de rayos X

Información generada con asistencia de ChatGPT y revisada por el autor.

FORMACIÓN DE RAYOS X


- 1. Calor anódico.
- 2. Radiación característica.
- 3. Efecto Bremsstrahlung.

Bushong, S. C. (2013). Manual de radiología para técnicos: Física

FORMACIÓN DE RAYOS X - CALOR ANÓDICO

- Capa externa.
- Emisión radiación infrarroja.
- Depende del mA.

Bushong, S. C. (2013). Manual de radiología para téc protección radiológica (10ª ed.). Elsevier.

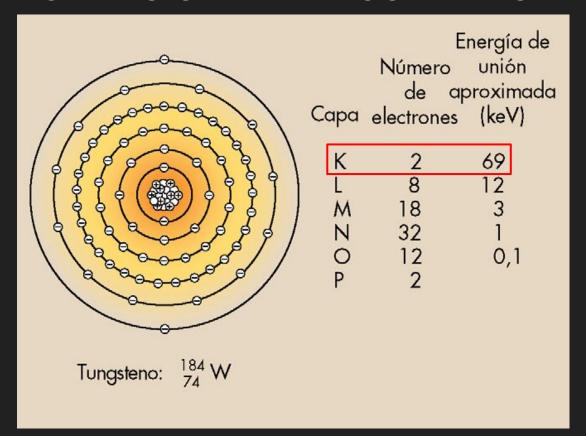
FORMACIÓN DE RAYOS X - CALOR ANÓDICO

Calor anódico.

ENERGÍA $(J) = kV \times mA \times Tiempo (s)$

Para 90 kV y 20 segundos de exposición.

- 8 mA: $90 \times 8 \times 20 = 14400 \text{ J}$
- 10 mA: 90 x 10 x 20 = 18000 J (Incremento 25%)
- 12 mA: 90 x 12 x 20 = 21600 J (Incremento 50%)


Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.

Radiación característica.

Cuando un electrón de la capa externa ocupa un hueco de la capa interna (K).

Electrón Electrones proyectil ionizados de la capa K Rayos X característicos

Bushong, S. C. (2013). Manual de radiología para técnicos protección radiológica (10^a ed.). Elsevier.

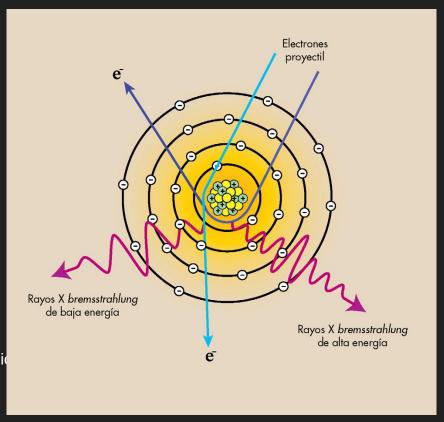
Capa electrónica	Energía de enlace
	(keV)
К	69.5
L	12.1
М	2.8
N	0.6
0	0.1
P	~0.01
Kα (L → K)	59.3
Kβ (M → K)	67.2

TABLA 8-1	Rayos X cara	cterísticos del	tungsteno y	sus energías	de enlace e	efectivas (keV)
TRANSICIÓN ELECTRÓNICA DESDE LA CAPA						
Característica	Capa L	Capa M	Capa N	Сара О	Capa P	Energía efectiva de los rayos X
K	57,4	66,7	68,9	69,4	69,5	69
L		9,3	11,5	12,0	12,1	12
M			2,2	2,7	2,8	3
N				0,52	0,6	0,6
0				10.000	0,08	0,1

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10^a ed.). Elsevier.

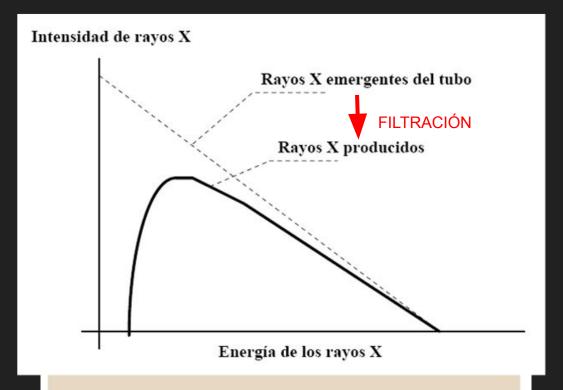
Radiación característica.

- Energía del electrón.
- Energía del rayo X.
- Valores constantes.


Electrón Electrones proyectil ionizados de la capa K Rayos X característicos

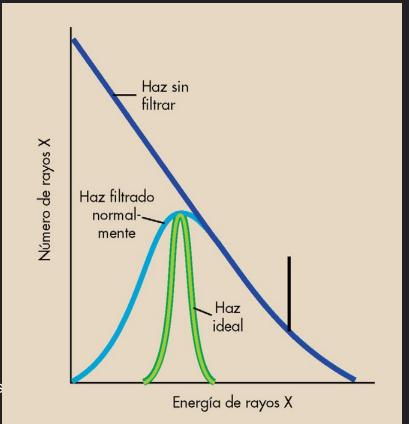
Bushong, S. C. (2013). Manual de radiología para técnicos protección radiológica (10^a ed.). Elsevier.

FORMACIÓN DE RAYOS X - BREMSSTRAHLUNG


- Campo eléctrico nuclear.
- Pérdida de energía cinética.
- Deflexión Detención.
- Emisión de fotón de rayos X.
- El límite es el valor de kVp.

Bushong, S. C. (2013). Manual de radiología para técnic protección radiológica (10ª ed.). Elsevier.

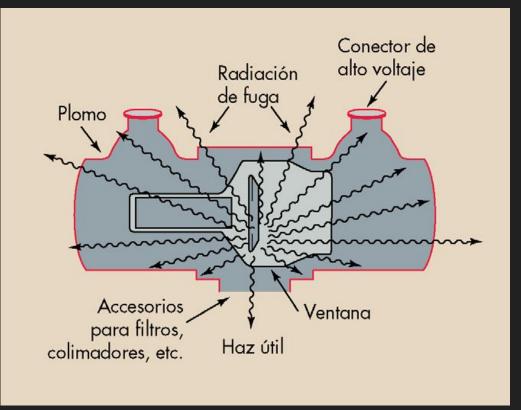
FORMACIÓN DE RAYOS X - BREMSSTRAHLUNG


- Energía cinética.
- Velocidad menor a la de la luz (40-50%).
- Se genera un espectro de emisión de energía variable entre +0 a x Kv.

https://images.app.goo.gl/boHGXcCa4vxmUTuB8 https://images.app.goo.gl/D6Nf6mtcS73mfteA7

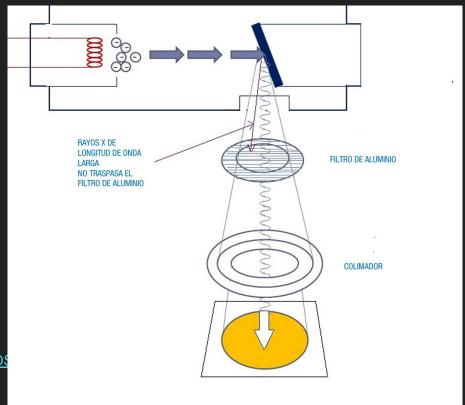
FILTRACIÓN

- Absorber los rayos X de menor energía.
- Incrementa la energía promedio de los rayos X.
- F. Inherente.
- F. Añadida

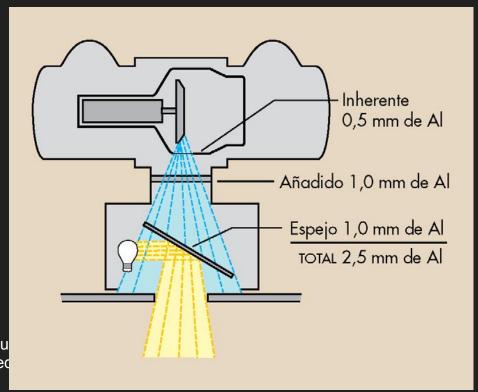


Bushong, S. C. (2013). Manual de radiología para técnicos protección radiológica (10^a ed.). Elsevier.

FILTRACIÓN INHERENTE

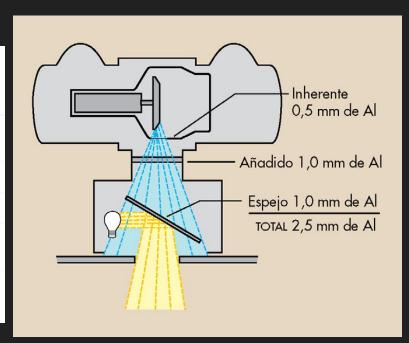

- Ampolla de vidrio.
- Aceite.
- Carcasa.
- < 20 KeV / 0.5 1 mm Al

Bushong, S. C. (2013). Manual de radiología para protección radiológica (10^a ed.). Elsevier.

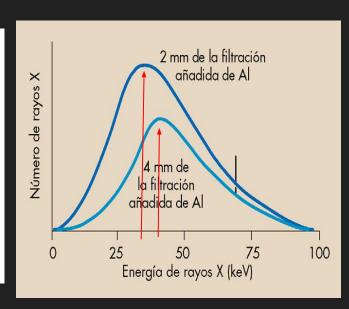


FILTRACIÓN AÑADIDA

- Filtros adicionales (Al, Cu).
- A la salida del haz.

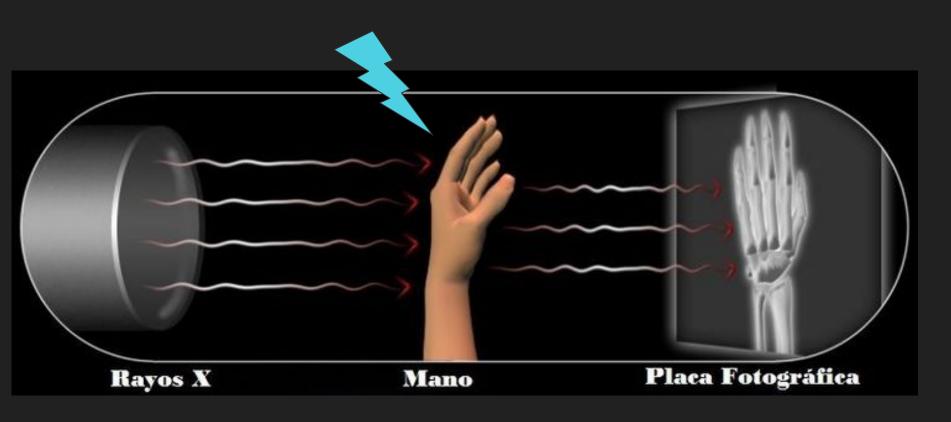


EXCO03 CONT R06 FILTROS DEL APARATO DE RAYOS


Bushong, S. C. (2013). Manu protección radiológica (10ª ec

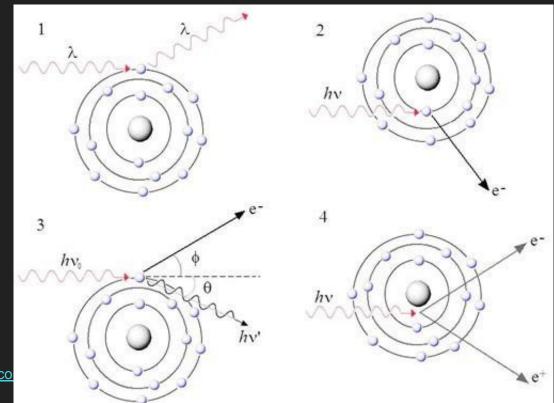
Relación entre kVp y mmAl equivalente (filtración total mínima)				
kVp (kilovoltaje pico)	Filtración total mínima (mmAl equivalente)	Justificación / Fuente		
≤ 50 kVp	0.5 mm Al	Recomendado para equipos portátiles, radiografía pediátrica		
51 – 70 kVp	1.5 mm Al	Mínimo requerido en odontología intraoral		
71 – 100 kVp	2.5 mm Al	Estándar para diagnóstico general y CBCT		
101 – 150 kVp	3.0 mm Al	Recomendado para tomografía médica, fluoroscopía		
> 150 kVp	≥ 3.0 mm Al o filtración compensadora adicional	Especialidades como radioterapia o angiografía		

Información generada con asistencia de ChatGPT y revisada por el autor Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.

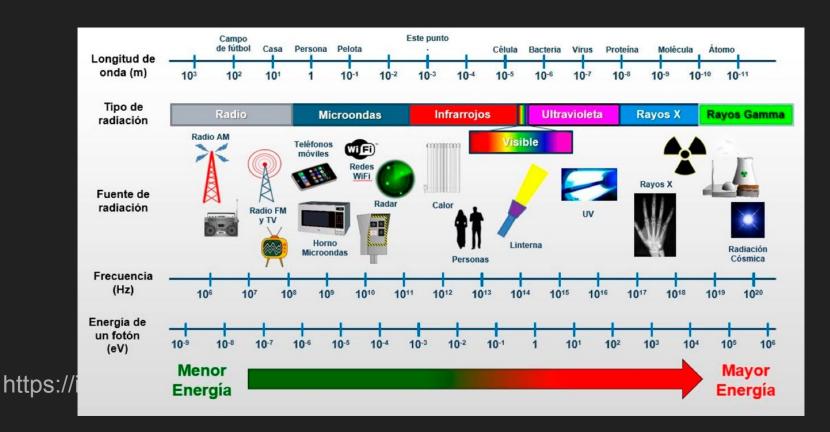

Parámetro	2 mm Al	4 mm Al	Interpretación
Energía promedio	Menor (~40-50 keV)	Mayor (~60–70 keV)	Aumenta la capacidad de penetración
Cantidad de fotones	Mayor	Menor	Se eliminan fotones ineficaces
Dosis al paciente	Mayor	Menor	Se evita radiación innecesaria
Contraste de imagen	Mayor	Menor	Rayos más duros = menor contraste
Ruido / calidad	Menor ruido	Posible aumento del ruido si no se ajusta el mAs	Se requiere compensación con tiempo o corriente

Información generada con asistencia de ChatGPT y revisada por el autor. Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.

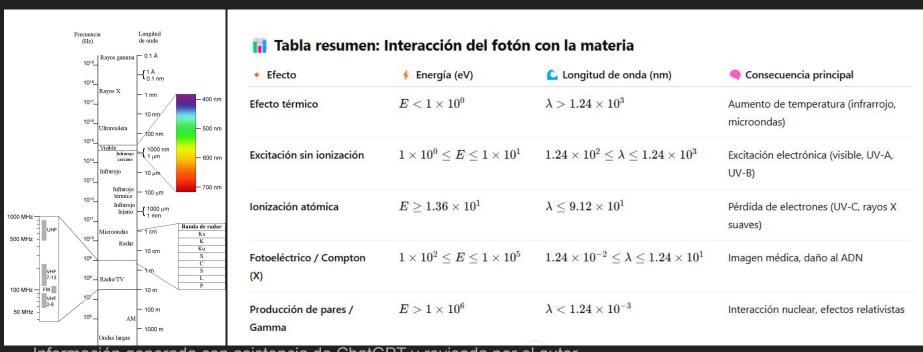
Tabla: Relación entre kVp, Filtrado (mmAl) y Energía Promedio (keV)			
kVp	Filtrado total (mmAl)	Energía promedio estimada (keV)	% respecto a kVp
70	1.0	~20	~29%
70	1.5	~23	~33%
70	2.0	~26	~37%
70	2.5	~28	~40%
70	3.0	~30	~43%
80	2.5	~32	~40%
90	2.5	~36	~40%
100	3.0	~42	~42%
120	3.0	~50	~42%
140	3.0	~60	~43%
150	4.0	~66	~44%


Información generada con

https://images.app.goo.gl/mU7avEGsQJPGteabA

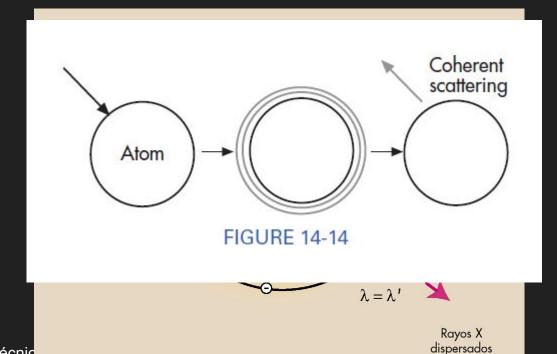

INTERACCIÓN DE LOS RAYOS X CON LA MATERIA

- 10⁻⁸ a 10⁻⁹ m.
- Interacción a nivel de átomos, electrones y núcleos.



2: Mecanismos de interacción de los fotones co

INTERACCIÓN DE LOS RAYOS X CON LA MATERIA


INTERACCIÓN DE LOS RAYOS X CON LA MATERIA

Información generada con asistencia de ChatGPT y revisada por el autor. https://sl.bing.net/dp6LzThnrFs

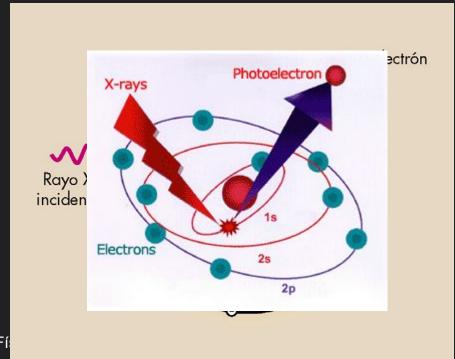
DISPERSIÓN COHERENTE

- Fotón Átomo.
- Cambio en la dirección.
- Igual longitud de onda.
- < 10 keV</p>

Bushong, S. C. (2013). Manual de radiología para técnic protección radiológica (10^a ed.). Elsevier.

DISPERSIÓN COHERENTE

Probabilidad relativa de dispersión coherente (Rayleigh) a diferentes kVp


(valores aproximados, dependen del número atómico del material y filtrado del haz)

kVp	Probabilidad de dispersión coherente	Comparación con otros efectos
70	~1% o menos	Dominan Compton (~90%) y algo de efecto
		fotoeléctrico (~9%)
80	<1%	Compton aún más dominante
90	<1%	La dispersión coherente sigue disminuyendo

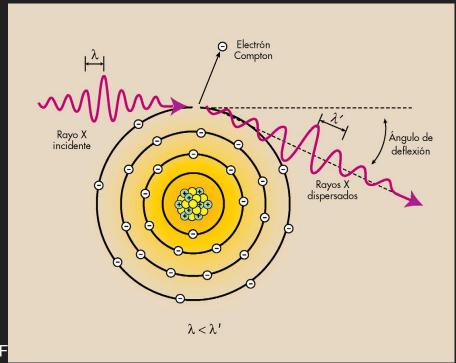
Información generada con asistencia de ChatGPT y revisada por el autor.

EFECTO FOTOELÉCTRICO

- Foton / Capa K.
- Fotoelectrón.
- Seguido de radiación característica.

Bushong, S. C. (2013). Manual de radiología para técnicos: Fíprotección radiológica (10ª ed.). Elsevier. https://images.app.goo.gl/HD8KcrRjUbqZwhjX7

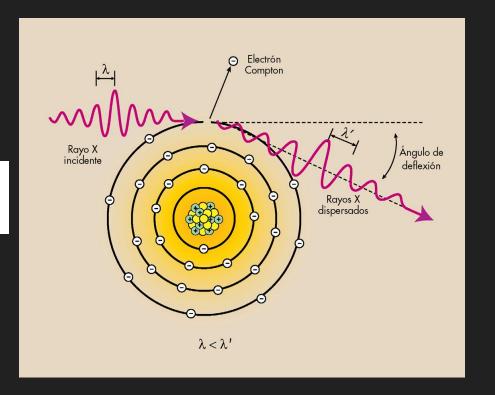
EFECTO FOTOELÉCTRICO

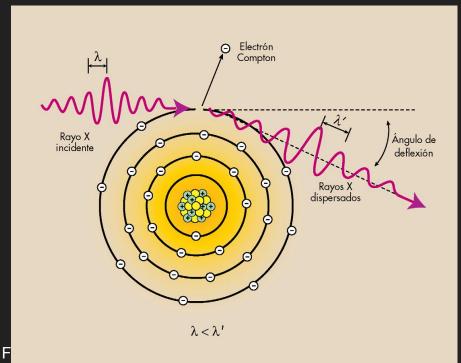

★ COMPORTAMIENTO DE LA RADIACIÓN CARACTERÍSTICA EN DIFERENTES

MATERIALES

Material	Densidad / Z efectivo	Interacción con fotón característico	Probabilidad de que llegue al sensor
Hueso	Alta / Z ≈ 13-17	Alta absorción fotoeléctrica	Muy baja
Tejido blando	Baja / Z ≈ 6-7	Menor absorción, pero también dispersa	Baja a media (según espesor)
Metales (p. ej., amalgama, implantes)	Muy alta / Z > 30	Casi total absorción o generación de nuevos fotones característicos propios	Casi nula, puede generar artefactos o bloqueo completo

Información generada con asistencia de ChatGPT y revisada por el autor.


- Fotón/electrón externo.
- Desviación, pérdida de energía.
- Escape del electrón.
- lonización del átomo.


Bushong, S. C. (2013). Manual de radiología para técnicos: F protección radiológica (10ª ed.). Elsevier.

🖈 La fórmula simplificada de la conservación de la energía sería:

$$E_{\text{fot\'on incidente}} = E_{\text{fot\'on dispersado}} + E_{\text{electr\'on Compton}}$$

- Desviación, pérdida de energía.
- Escape del electrón.
- lonización del átomo.

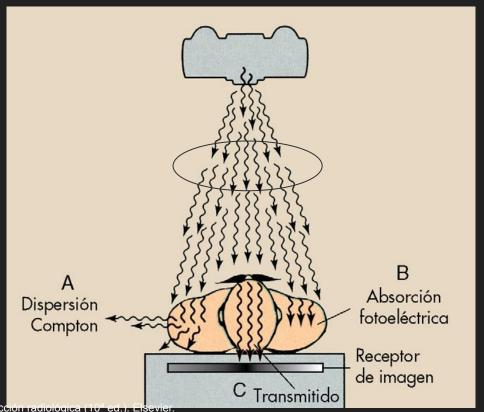
Bushong, S. C. (2013). Manual de radiología para técnicos: F protección radiológica (10^a ed.). Elsevier.

[Comparación de interacciones en tejidos blandos (probabilidades relativas aproximadas)

kVp	Efecto fotoeléctrico	Dispersión coherente	Dispersión Compton
60	10–15%	~2%	83-88%
70	7–10%	~1%	89–92%
80	5–8%	<1%	91–94%
90	3–6%	<1%	93–96%
100	2–4%	<1%	95–97%

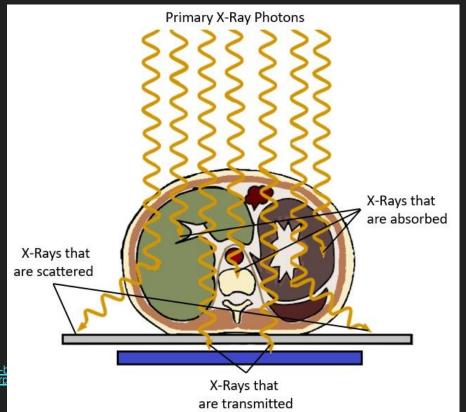
Información generada con asistencia de ChatGPT y revisada por el autor.

A: Physical Grid

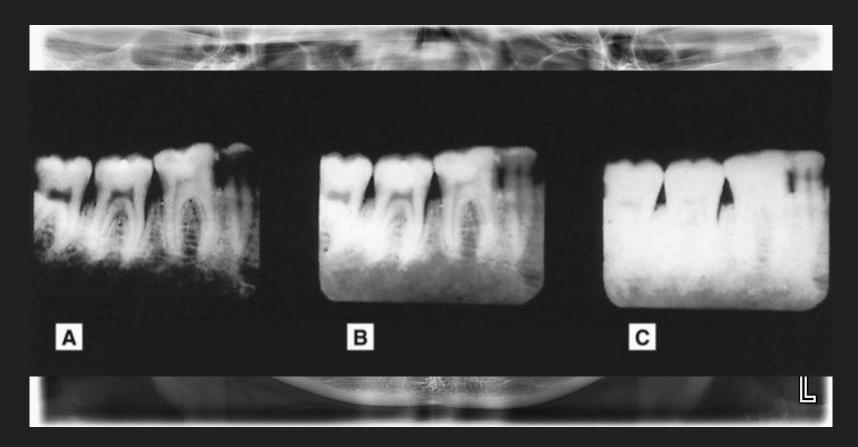

B: SmartGrid

C: No SmartGrid

IMAGEN RADIOGRÁFICA


- Haz de rayos X (polienergetico).
- Los fotones:
 - a. Atraviesan s/interacción.
 - b. Absorbidos.
 - c. Dispersados.

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.


IMAGEN RADIOGRÁFICA

- Haz de rayos X (polienergetico).
- Los fotones:
 - a. Atraviesan s/interacción.
 - b. Absorbidos.
 - c. Dispersados.

https://umsystem.pressbooks.pub/digitalradiographicexposure/chapter/from-x-ray-lhttps://umsystem.pressbooks.pub/app/uploads/sites/32/2022/08/Differential-absorp

IMAGEN RADIOGRÁFICA

FORMACIÓN DE PARES

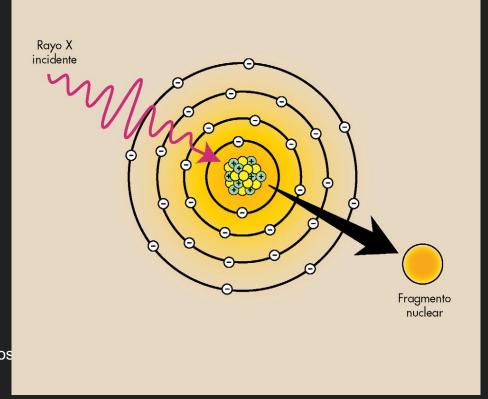
- Influencia del núcleo.
- Desaparición del fotón.
- Aparición de dos electrones (e⁻,e⁺).
- Megaelectronvoltio (MeV)
- 1.02 MeV
- Equipos de terapia/investigación.
- Aniquilación e⁺ con e⁻ de 2x511 KeV.

0,51 MeV

Rayo X incidente Electrón

Bushong, S. C. (2013). Manual de radiología para técnicos: protección radiológica (10ª ed.). Elsevier.

FORMACIÓN DE PARES


Tabla de Energías en Equipos Médicos (kV vs. MeV)

Equipo	Energía	Aplicación	Interacción Dominante
Radiografía Dental	50–70 kV	Dientes/mandíbula	Fotoeléctrico
Mamografía	25–35 kV	Cáncer de mama	Fotoeléctrico
Fluoroscopía	60–120 kV	Estudios GI/angiografía	Fotoeléctrico + Compton
СТ	80–140 kV	Imagen 3D	Compton
CBCT Dental	70–90 kV	3D dental/craneal	Compton
Radioterapia Superficial	50–150 kV	Piel	Fotoeléctrico
Cobalto-60 (⁶⁰ Co)	1.17–1.33 MeV	Radioterapia (GammaKnife)	Compton + Pares
LINAC	6–25 MeV	Tumores profundos	Pares + Compton
PET	511 keV	Diagnóstico oncológico	Aniquilación e ⁻⁺
Ciclotrón	10-30 MeV	Producción de radioisótopos	Pares + Radiación de frenado

Información generada

DESINTEGRACIÓN FOTÓNICA

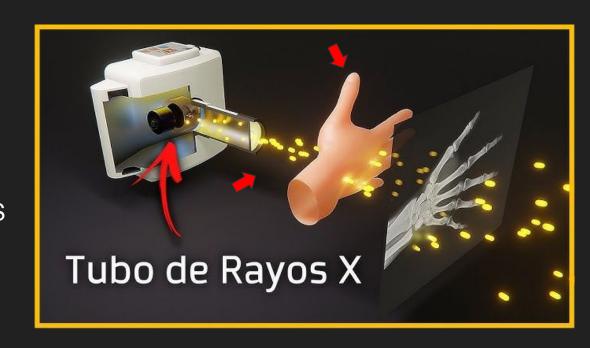
- Energías mayores a 10 MeV.
- Se emite un nucleón.
- Neutrón a velocidades altas (7-10 MeV).
- Protón (10 a 20 MeV).

Bushong, S. C. (2013). Manual de radiología para técnicos protección radiológica (10ª ed.). Elsevier.

DESINTEGRACIÓN FOTÓNICA

Modalidad / Partícula	Energía (MeV) aproximada	Comentario
Neutrón liberado (fotodesintegración)	1 – 5 MeV	Fragmento sin carga, muy penetrante
Protón liberado	1 – 3 MeV	Más energético que RX, alto LET
Rayo X periapical (70 kVp)	0.025 – 0.035 MeV	Energía promedio de fotones: 25–35 keV
Rayo X panorámico (60–90 kVp)	0.02 – 0.04 MeV	Depende del filtrado y generador
CBCT dental (80–90 kVp)	0.03 – 0.05 MeV	Energía efectiva variable, similar a radiografía
Radiografía de tórax (120 kVp)	0.04 – 0.06 MeV	Energía promedio ~¹/₃–¹/₂ del kVp
Radiografía de abdomen (100–120 kVp)	0.04 – 0.06 MeV	Igual que tórax, depende de la técnica
Radiografía de mama (mamografía, 25–30 kVp)	0.012 – 0.017 MeV	Energía más baja, para tejidos blandos
(8.5%)	\downarrow	

Información generada c

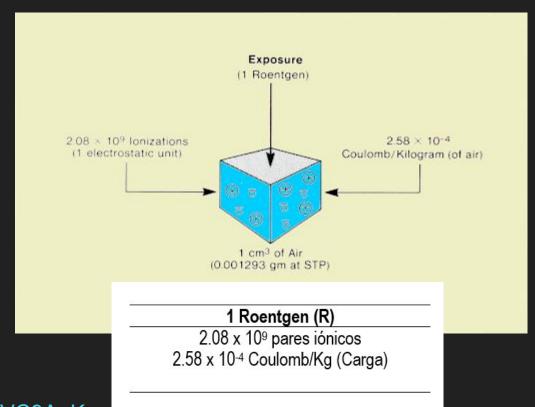

PROTECCIÓN CONTRA LA RADIACIÓN

DOSIMETRÍA

CONSECUENCIAS DE LA RADIACIÓN

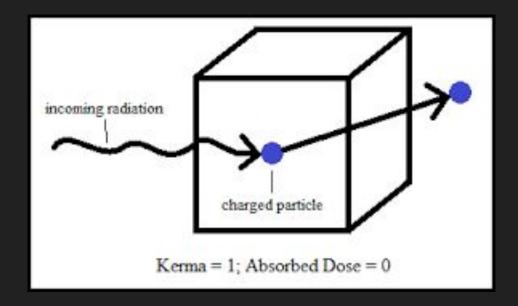
DOSIMETRÍA

- 1. EXPOSICIÓN.
- 2. ENERGÍA TRANSFERIDA/ABSOR BIDA.
- 3. PONDERACIÓN DE EFECTOS BIOLÓGICOS Y DETERMINACIÓN DE ABSORCIÓN POR TEJIDO EXPUESTO.


DOSIMETRÍA

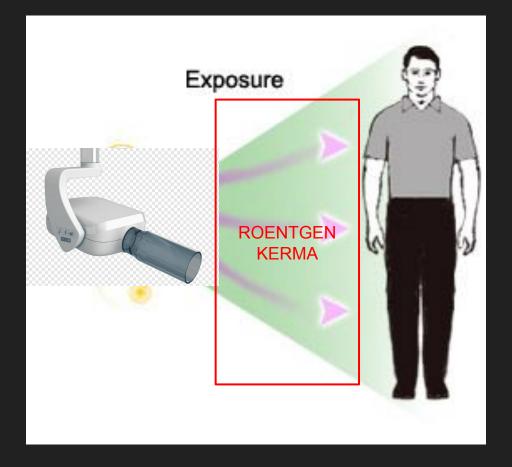
- Estudia cuánta energía de radiación recibe un material o tejido.
- Solo se aplica a radiaciones ionizantes.
- Evaluar riesgos.
- Garantizar seguridad.

EXPOSICIÓN


- Medida de carga eléctrica expresada en Coulomb/kg.
- Relacionada a pares iónicos.

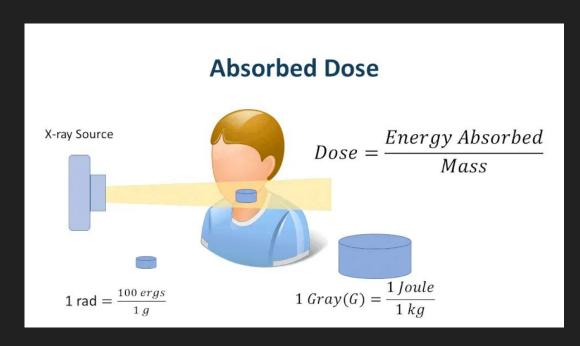
https://images.app.goo.gl/1RZVYWoVC9AuKwsn/ https://images.app.goo.gl/dXKYdaLxdf22EwzK8

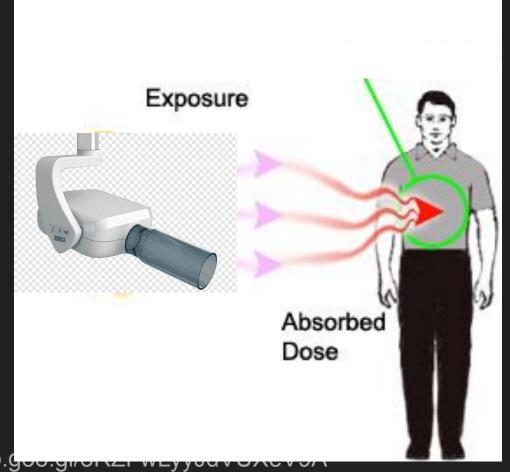
EXPOSICIÓN


- Grado de ionización del aire (O, N, CO₂, Ar) .
- Directamente proporcional a la energía del haz.
- Indicador indirecto de la cantidad de radiación dispersa en el ambiente.

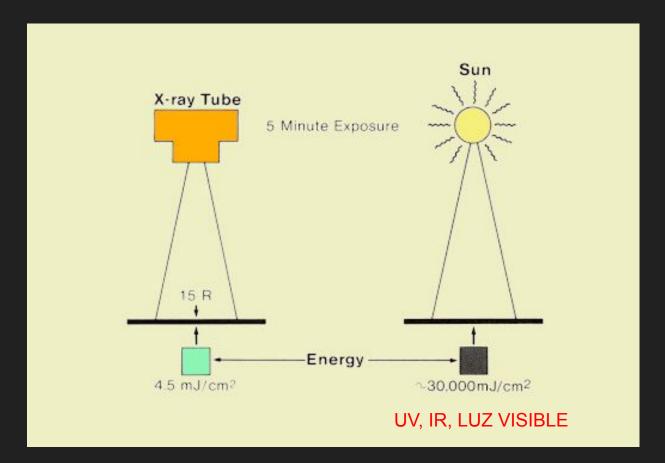
EXPOSICIÓN

VS Diferencias clave				
Característica	Exposición (R)	Kerma en aire (Gy)		
¿Qué mide?	Carga eléctrica liberada (ionización)	Energía transferida a electrones		
Unidad	Roentgen (R)	Gray (Gy)		
Sistema de unidades	Tradicional (fuera del SI)	Sistema Internacional (SI)		
Medio de aplicación	Solo en aire	Aire, tejidos, agua, etc.		
Tipo de radiación	Rayos X y gamma	Rayos X y gamma		
Relación con dosis absorbida	Indirecta	Más cercana (preludio de dosis absorbida)		
Uso actual	Histórica / calibración de detectores	Dosimetría médica moderna		


Información gene


https://images.app.goo.gl/y4618FuvtkEHusZ49

DOSIS ABSORBIDA (D)


- Medición de la energía depositada en una masa.
- No tiene en cuenta la composición del material.
- Rad = 100 erg/gr.
- Gray = 1 J/Kg.
- 100 Rad = 1 Gray

https://images.app.goo.gl/quZ52vrousFNazQ6A

https://images.app.goo.gnorzer wzyyouvozevoze

https://images.app.goo.gl/4rwYKxW8gEM3Cx3s6

DOSIS EQUIVALENTE (H)

- Energía depositada en un tejido ajustada por el factor relacionado a la radiación ionizante.
- REM
- SIEVERT

$$E = \sum_{T} w_T H_T$$

where

- H_T is the equivalent dose averaged over the tissue or organ, T, due to the incident radiation, R.
- w_T the tissue weighting factor.

100 REM = 1 Sievert

DOSIS EQUIVALENTE

Ejemplo de cálculo de dosis equivalente:

Dosis equivalente (Sv) = Dosis absorbida (Gy) \times WR

Así, 1 Gy de radiación alfa equivale a 20 Sv, mientras que 1 Gy de rayos X equivale a 1 Sv.

DOSIS EQUIVALENTE

Tipo de radiación	LET aproximado (keV/ μm)	WR (factor de ponderación)	Dosis absorbida (Gy)	Dosis equivalente (Sv) = Gy × WR	Ejemplo clínico
Rayos X	1–3	1	1 Gy	1 Sv	Radiografía dental, TC, mamografía
Radiación gamma (γ)	0.2–3	1	1 Gy	1 Sv	Radioterapia externa, gammagrafía
Radiación beta (β)	0.2–10	1	1 Gy	1 Sv	Tratamientos de medicina nuclear
Radiación alfa (α)	100–200	20	1 Gy	20 Sv	Inhalación de radón, braquiterapia alfa
Neutrones (depende de E)	10–100	5–20	1 Gy	5–20 Sv	Terapia con neutrones

DOSIS EFECTIVA (E)

- Determinación de la dosis ajustada por los órganos expuestos.
- HUMANOS
- Sievert.

$$E = \sum (D_T imes W_T)$$

Donde:

- D_T es la dosis absorbida media en un tejido u órgano específico T, medida en Gray (Gy).
- W_T es el factor de ponderación tisular correspondiente a ese órgano o tejido.
- El resultado E se expresa en Sievert (Sv).

Tejido u órgano	WT	Comentarios
Médula ósea roja	0.12	Alta producción celular, riesgo leucemia.
Colon	0.12	Tejido muy radiosensible.
Pulmón	0.12	Alta incidencia de cáncer tras irradiación.
Estómago	0.12	Afectado en exposiciones abdominales.
Glándula mamaria (mama)	0.12	Especialmente sensible en mujeres jóvenes.
Gónadas	0.08	Riesgo hereditario; fertilidad.
Vejiga	0.04	Frecuentemente irradiada en estudios pélvicos.
Hígado	0.04	Órgano de gran masa irradiado en estudios abdominales.
Esófago	0.04	Tránsito frecuente de haces torácicos.
Tiroides	0.04	Sensible en niños; expuesta en estudios cervicales.
Piel	0.01	Baja radiosensibilidad relativa.
Superficie ósea	0.01	Baja regeneración celular.
Cerebro	0.01	Relativamente resistente a efectos estocásticos.
Resto del cuerpo	0.12	Distribuido entre tejidos no listados arriba

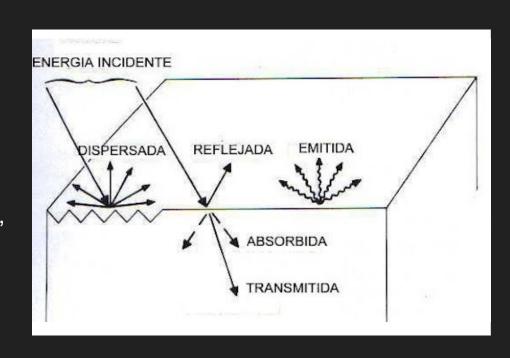
International Commission on Radiological Protection. *The 2007 Recommendations of the International Commission on Radiological Protection*. ICRP Publication 103. Ann ICRP. 2007;37(2-4):1–332.

Estudio	Región / tipo de imagen	Dosis efectiva (mSv)	Referencia principal
Radiografía dental panorámica	Cavidad oral	0.005 – 0.03	Ludlow et al., 2008
Cefalometría lateral	Cráneo	0.002 - 0.008	Yilmaz et al., 2015
CBCT campo pequeño (5×5 cm)	Región local	0.01 – 0.03	Pauwels et al., 2012
CBCT máxilofacial completo	Cráneo facial completo	0.07 - 0.25	ICRP 129, 2015
Radiografía de tórax PA	Tórax	0.02 - 0.1	Mettler et al., 2008
Radiografía abdominal	Abdomen	0.3 – 0.7	Huda et al., 2008
Tomografía de tórax (CT)	Tórax completo (espiral)	4 – 8	Mettler et al., 2008; ICRP 103, 2007
Tomografía abdominal y pélvica (CT)	Abdomen + pelvis	8 – 15	HPA-RPD-029, 2007; Mettler et al., 2008

	H	Tabla	comp	oarativa
--	---	--------------	------	----------

Elemento	Periapical	Panorámica dental	CBCT campo medio (10×10 cm)	Radiografía de tórax PA
kVp aproximado	60–70 kVp	70–90 kVp	80–100 kVp	110–130 kVp
Órganos irradiados	Dientes, hueso (0.01), piel (0.01)	Glándulas salivales (0.01), tiroides (0.04), médula ósea (0.12)	Mandíbula, tiroides, glándulas salivales, encéfalo, piel	Pulmones (0.12), piel (0.01), médula ósea (0.12), mama (0.12)
Dosis absorbida típica (mGy)	0.005 mGy	0.03 mGy	0.4 mGy	0.2 mGy
Cálculo estimado de E	(0.005 × 0.01 × 2) ≈ 0.0001 mSv	(0.03 × (0.01 + 0.04 + 0.12)) ≈ 0.005 – 0.01 mSv	0.4 × (0.01 + 0.04 + 0.12 + 0.01) ≈ 0.07 – 0.09 mSv	$0.2 \times (0.12 + 0.01 + 0.12 + 0.12) \approx$ 0.07 - 0.1 mSv
Dosis efectiva estimada (E)	~0.0001 mSv	0.005 – 0.01 mSv	0.07 – 0.09 mSv	0.07 – 0.1 mSv
Equivalente en días de radiación natural	~0.01 días	0.6 – 1.2 días	8.5 – 11 días	8.5 – 12 días

DE	N	T/	۱L
		ĺ)


Procedimiento	Dosis de radiación efectiva aproximada	Comparable a la radiación natural de fondo para:
Rayos X dentales	0,005 mSv 400	0 1 día
Rayos X panorámicos	0.025 mSv 800	3 días
Tomografía computarizada (TC) dental de haz cónico	0.18 mSv 11	22 días

CORAZÓN	Procedimiento	Las dosis de radiación efectiva aproximada	Comparable a la radiación natural de fondo para:
	Angiografía coronaria por TC (ACTC)	8.7 mSv	3 años
	TC cardíaca para la cuantificación de calcio coronario	1.7 mSv	6 meses
	Angiografía por tomografía computarizada no cardíaca (CCTA)	5.1 mSv	menos de 2 años
	romograna compatanzada (10) columna	0.01101	3 41103
	Enema de bario (rayos X del tracto Gl inferior)	6 mSv	2 años
osis de ra	Estudio con bario del tracto Gl superior	6 mSv	2 años

PROTECCIÓN CONTRA LA RADIACIÓN

Puntos a considerar:

- La radiación viaja en línea recta.
- 2. Su intensidad disminuye al incrementar la distancia.
- La radiación puede ser reflejada, dispersada o absorbida.

Fredericksen N. Radiobiología. En: White SC, Pharoah MJ, eds. *Radiología oral: principios e interpretación*. 4ª ed. St. Louis: Mosby; 1997. p. 23–40.

ALARA

A.L.A.R.A. AS LOW AS REASONABLY ACHIEVABLE

PROTECCIÓN CONTRA LA RADIACIÓN

Principios fundamentales de protección (ICRP 2007)

- 1. Justificación del estudio.
- 2. Optimización de la protección.
- 3. Aplicación del límite de dosis.

Aplicación del límite de dosis.

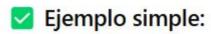
Límites de dosis recomendados en situaciones de exposición planificadas (valores actualizados según ICRP)

Tipo de límite	Ocupacional (trabajadores expuestos)	Público general
Dosis efectiva anual	20 mSv por año en promedio durante 5 años (máximo 100 mSv en 5 años y no más de 50 mSv en un solo año)	1 mSv por año en promedio durante 5 años (puede superar 1 mSv en un año siempre que el promedio a 5 años no lo haga)
Dosis equivalente anual al cristalino	20 mSv por año en promedio durante 5 años (nuevo límite basado en evidencia de cataratas)	15 mSv por año
Dosis equivalente anual en piel	500 mSv por año, promediado en cualquier área de 1 cm² independientemente del área expuesta	50 mSv por año
Dosis equivalente anual en manos y pies	500 mSv por año	No aplica

PROTECCIÓN RADIOLÓGICA

- Minimizar exposición.
- Tres principios:
 - 1. Tiempo.
 - 2. Distancia.
 - 3. Protección.

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.


TIEMPO

- Duración de la exposición.
- Directamente proporcional.

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.

TIEMPO

Tiempo de exposición	Tasa de dosis constante	Dosis recibida
1 segundo	0.05 mSv/s	0.05 mSv
5 segundos	0.05 mSv/s	0.25 mSv
10 segundos	0.05 mSv/s	0.5 mSv

Modalidad / Técnica	Tiempo típico de exposición	Tasa de dosis estimada (mSv/s)	Dosis total estimada (mSv)	Comentario
Radiografía periapical digital	0.1 – 0.2 s	0.02 – 0.05	0.002 – 0.01	Muy baja, sensor digital eficiente
Radiografía panorámica	10 – 20 s	0.0015 – 0.003	0.015 – 0.030	Exposición rotatoria
₹ CBCT campo pequeño	5 – 10 s	0.006 – 0.01	0.03 – 0.1	Depende del voxel y FOV
	12 – 20 s	0.01 – 0.015	0.12 – 0.3	Mayor volumen expuesto
Tórax PA (posterior-anterior)	0.1 – 0.2 s	0.5 – 1.0	0.05 – 0.2	Alta energía (120 kVp)
Abdomen AP	0.2 – 0.5 s	1.0 – 2.0	0.2 – 1.0	Aumento de masa expuesta
Mamografía (ambas mamas)	1 – 2 s (total)	0.2 – 0.3	~0.4	Uso de baja energía
	10 – 60 s (promedio)	0.02 – 0.05	0.2 – 3.0	Riesgo acumulado por tiempo
Tomografía médica (TC cabeza)	1 – 3 s	3.0 – 5.0	~2	Alta dosis en corto tiempo
Angiografía	30 – 180 s (procedimiento)	0.05 – 0.1	3 – 15	Procedimiento prolongado

DISTANCIA

- Al aumentar la distancia, disminuye la exposición.
- Inversamente proporcional.

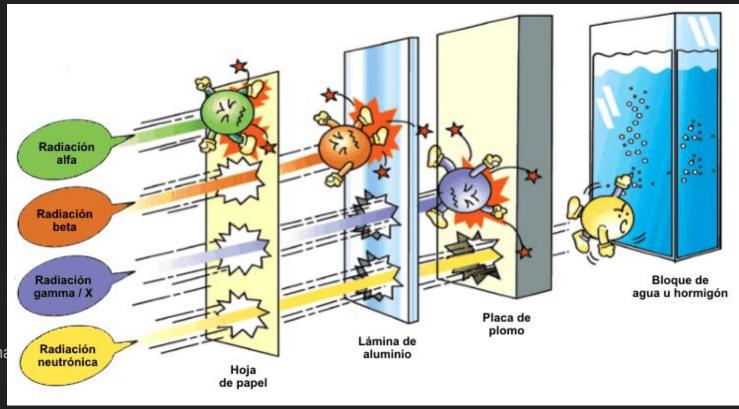
$$\rm Intensidad \propto \frac{1}{\rm distancia^2}$$

20 inches Area = 1Exposure = 140 inches Area = 4Exposure = $\frac{1}{4}$ 60 inches Area = 9Exposure = 1/9

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología (10ª ed.). Elsevier.

https://radiologykey.com/wp-content/uploads/2016/02/B9780323084956000014_f0

DISTANCIA


🗑 📊 Tabla comparativa: Estudios radiológicos (NCRP, 3.0 mSv/año)						
Estudio	DFP	Dosis efectiva (mSv)	Equiv. en días de radiación natural	Riesgo estocástico	Riesgo determinístico	
Radiografía periapical	15–20 cm	0.005 - 0.01	0.6 – 1.2 días	Muy bajo	Nulo	
Radiografía bitewing	15–20 cm	0.005 - 0.01	0.6 – 1.2 días	Muy bajo	Nulo	
Radiografía oclusal	20–30 cm	0.01 – 0.02	1.2 – 2.4 días	Muy bajo	Nulo	
Radiografía panorámica	Automática ¹	0.02 - 0.03	2.4 – 3.7 días	Bajo	Nulo	
CBCT campo pequeño	Automática ¹	0.05 - 0.2	6.1 – 24.4 días	Bajo	Nulo	
CBCT campo medio	Automática ¹	0.2 – 0.6	24.4 – 73.2 días	Moderado	Nulo	
CBCT campo amplio	Automática ¹	0.6 – 1.1	73.2 – 134.1 días	Moderado	Nulo	
Tórax PA (posteroanterior)	180 cm	0.1	12.2 días	Bajo	Nulo	
Tórax AP portátil	100–120 cm	0.1 – 0.2	12.2 – 24.4 días	Bajo – Moderado	Nulo	

Informa

DISTANCIA

Disminución de dosis por distancia (fuente puntual)

Estudio	Dosis a 1 m (μSv)	Dosis a 2 m (μSv) (% ↓)	Dosis a 3 m (μSv) (% 1)	Dosis a 4 m (μSv) (% ↓)
Periapical (intraoral)	5.0	1.25 (↓ 75 %)	0.56 (188.8%)	0.31 (193.8%)
Panorámica	24.0	6.0 (175%)	2.67 (\$88.9%)	1.5 (193.75%)
CBCT campo medio	130.0	32.5 (↓ 75 %)	14.4 (↓88.9%)	8.1 (1 93.8 %)
Tórax (PA)	100.0	25.0 (↓ 75 %)	11.1 (↓88.9%)	6.25 (1 93.75 %)

https://ima

- Medida de protección pasiva.
- En personas que no están siendo examinadas directamente.
- Interposición de materiales absorbentes entre la fuente de radiación y las personas.

PROTECCIÓN RADIOLÓGICA

https://images.app.goo.gl/QptM8K4daikwkmR28

- Plomo.
 - Z=82 (fotoeléctrica)
 - o Densidad= 11.34 g/cm³
- 1 mm puede reducir a menos de 1% de la energía inicial.
- Tenth Value Layer (TVL)
- Half Value Layer (HVL)

Comparación práctica:

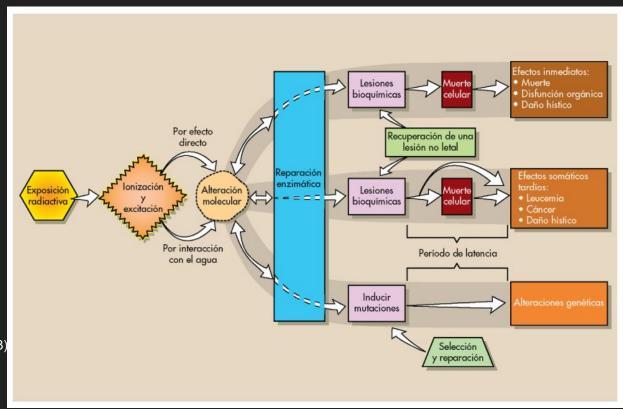
Concepto	HVL (Half-Value Layer)	TVL (Tenth-Value Layer)
Uso principal	Control de calidad, calibración	Diseño de blindaje estructural
Reducción de radiación	50%	90%
Aplicación clínica	Verifica filtración y calidad del haz	Determina espesor de barreras
Unidades comunes	mm de Aluminio, mm de Pb	cm o mm según el material

Espesor do	kVp	Atenuación (%)	Transmisión restante (%)	Aplicación sugerida
1 mm	70	99.9	0.1	Radiología dental y general
	80	99.5	0.5	Radiología dental / convencional
	90	98.5	1.5	Uso moderado, no para flujos altos
	100	97.0	3.0	Límite aceptable en cabinas aisladas
2 mm	70	99.99	0.01	Radiología médica y salas de RX
	80	99.9	0.1	Uso hospitalario
	90	99.5	0.5	Protección reforzada
	100	98.5	1.5	Protección aceptable
3 mm	70	99.999	0.001	Medicina nuclear / entornos de alta carga
	80	99.99	0.01	Ideal en salas de intervención
	90	99.9	0.1	Recomendado para blindajes fijos
	100	99.5	0.5	Medicina nuclear / fluoroscopía

- Blindaje estructural
- Blindaje móvil
- Protectores personales:
 - Delantal plomado: al menos 0.25 mm Pb, idealmente 0.5 mm Pb para estudios más intensos.
 - Cuello tiroideo (collar de tiroides): protege la glándula tiroides, muy radiosensible.
 - Protección gonadal y ocular: según el caso clínico y grupo de riesgo.

https://images.app.goo.gl/QptM8K4daikwkmR28

Parámetro	Valor típico (dependiendo del país/uso)		
Espesor equivalente de plomo	0.25 mm, 0.35 mm o 0.5 mm Pb		
Protección frontal	Mínimo 0.25 mm Pb, preferido 0.5 mm Pb para torso		
Protección lateral	Opcional, pero recomendable en exposiciones móviles		
Mandilón (paciente)	0.25 mm Pb (protección gonadal y tiroidea)		
Uso obligatorio	Personal ocupacionalmente expuesto y acompañantes		
Marcado	Debe indicar espesor, fabricante y fecha de fabricación		
Mantenimiento	Revisiones anuales (físicas y radiográficas contra grietas o pérdidas de		


Informa

Parámetro	Perú PE <i>(RM N° 515-</i> <i>2011/MINSA)</i>	México мх (NOM-229-SSA1- 2002)
Espesor mínimo delantal frontal	0.25 mm Pb (mínimo) – recomendado: 0.5 mm Pb para radiología general	0.25 mm Pb (mínimo) – 0.5 mm Pb en procedimientos prolongados
Protección lateral/costados	No obligatorio, pero sugerido en prácticas móviles	Recomendado cuando el trabajador se expone desde múltiples ángulos
Protección tiroidea	Obligatoria si el haz incide cerca del cuello	Obligatoria para trabajadores y pacientes en exploraciones cercanas al cuello
Uso en odontología	0.25 mm Pb suficiente con protección tiroidea	0.25 mm Pb suficiente, obligatorio en pediatría y embarazadas
Marcado del delantal	Nombre del fabricante, espesor, número de serie, fecha de fabricación	Ídem: datos visibles y permanentes sobre espesor y fabricante
Verificación del estado	Inspección anual (física y con rayos X)	Inspección anual (evaluación visual y con imagenología si se sospecha daño)
Reposición	Cuando hay grietas o disminución de efectividad detectada	Cuando hay daño estructural evidente o falla en inspección
Mandilón para paciente	0.25 mm Pb, recomendado en exámenes con exposición corporal directa	Obligatorio en niños, embarazadas y pacientes en prácticas prolongadas
Responsable de cumplimiento	Servicio de protección radiológica del centro	Supervisor de seguridad radiológica autorizado por la SSA

Información generada con asis

Funciones del blindaje personal:

Tipo de protección	Protege contra	Situaciones comunes
Delantal plomado	Radiación dispersa en el torso	Rx dental, fluoroscopía, CBCT, quirófano
Collar tiroideo	Dispersa que alcanza cuello y tiroides	Rx dental, panorámicas, intervencionismo
Gafas plomadas	Dispersa hacia cristalino	Cirugías con fluoroscopía o escopia
Guantes plomados	Dispersa en manos (uso limitado)	Intervencionismo vascular (con cuidado)

Bushong, S. C. (2013) (10^a ed.). Elsevier.

- Son el resultado de la interacción, producto de ionizaciones y excitaciones de las moléculas de un medio que ha recibido un haz de rayos x.
- Mecanismo:
 - Nivel celular (efecto directo).
 - Nivel molecular (efecto directo).
 - o Radicales libres del medio acuoso (efecto indirecto).
- Temporalidad:
 - Inmediato (minutos días)
 - Tardío (meses-años)
- Radioprotección:
 - Estocásticos (cancer, leucemias)
 - Determinísticos (sobreexposición)

Radiosensibilidad	Órgano o Tejido	Dosis umbral para efectos deterministas	Posibles efectos deterministas
Alta	Médula ósea roja	~0.5–1 Gy	Supresión hematopoyética, inmunosupresión
	Gónadas (testículos, ovarios)	~0.15–0.5 Gy	Esterilidad temporal o permanente
	Intestino delgado	~6–10 Gy	Mucositis intestinal, vómito, diarrea severa
	Células basales de la epidermis	~2–5 Gy	Eritema, descamación húmeda/seca, necrosis
	Cristalino (ojo)	~0.5–2 Gy	Cataratas (riesgo elevado a largo plazo)
Intermedia	Hígado	~30–40 Gy (fraccionado)	Hepatitis por radiación, disfunción hepática
	Piel (dermis, anexos)	~5–10 Gy	Fibrosis, pérdida de folículos pilosos, necrosis localizada
	Pulmones	~20–30 Gy (fraccionado)	Neumonitis por radiación, fibrosis pulmonar
	Glándulas salivales	~15–25 Gy	Xerostomía, pérdida de función glandular
Baja	Músculo esquelético	>40-50 Gy	Atrofia muscular tardía (raro)
300 F. J	Tejido nervioso central (cerebro)	>50 Gy	Necrosis cerebral focal, deterioro neurológico (a dosis altas)
	Hueso (adulto)	>50 Gy	Osteorradionecrosis, fracturas tardías
	Piel queratinizada (palmas, plantas)	>10–15 Gy	Engrosamiento, descamación, fibrosis localizada

Radiosensibilidad	Estructura / Tejido	Dosis Umbral (Gy)	Efectos Deterministas
Alta	Células basales de la epidermis	~2-3 Gy	Eritema, descamación seca
	Membranas mucosas (oral, nasal, rectal)	~3–6 Gy	Mucositis, úlceras, hemorragias mucosas
	Folículos pilosos (fase anágena)	~3 Gy	Alopecia temporal o permanente
	Glándulas sebáceas	~5 Gy	Reducción de secreción sebácea, sequedad cutánea
	Glándulas sudoríparas	~5-10 Gy	Hipohidrosis o anhidrosis localizada
Intermedia	Dermis superficial (fibroblastos, vasos)	~10–15 Gy	Edema, telangiectasias, fibrosis leve a moderada
	Unión dermoepidérmica	~10-15 Gy	Fragilidad cutánea, ampollas, retracción
	Tejido subcutáneo (grasa, microvasos)	~15–25 Gy	Fibrosis, pérdida de elasticidad, daño vascular crónico
	Glándulas salivales (mucosa oral relacionada)	~15–25 Gy	Xerostomía, pérdida de sabor, aumento de caries por sequedad
Baja	Piel queratinizada (palmas, plantas)	>15–20 Gy	Engrosamiento, descamación severa, necrosis localizada
	Tejido conectivo profundo	>30-40 Gy	Fibrosis densa, retracción tisular
	Vasos linfáticos dérmicos	>40 Gy	Linfedema localizado, compromiso del drenaje

- Temporalidad:
 - Inmediato (minutos días semanas)
 - Tardío (meses-años)

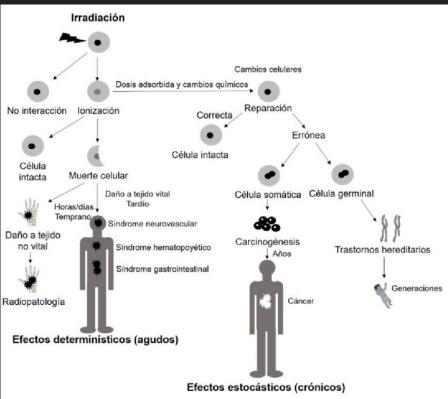
EFECTOS INMEDIATOS DE LA RADIACIÓN EN HUMANOS

- 1. Síndrome de radiación aguda:
 - a. Síndrome hematológico.
 - b. Síndrome gastrointestinal.
 - c. Síndrome del sistema nervioso central.
- 2. Lesión hística local:
 - a. Piel.
 - b. Gónadas.
 - c. Extremidades.
- 3. Depresión hematológica.
- 4. Lesión citogenética.

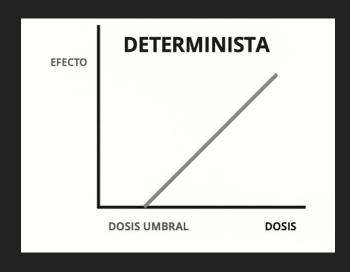
EFECTOS TARDÍOS DE LA RADIACIÓN EN HUMANOS

- Leucemia.
- 2. Otras enfermedades malignas:
 - a. Cáncer óseo.
 - b. Cáncer de pulmón.
 - c. Cáncer de tiroides.
 - d. Cáncer de mama.
- 3. Lesión hística local:
 - a. Piel.
 - b. Gónadas.
 - c. Ojos.
- 4. Acortamiento de la esperanza de vida.
- 5. Lesiones genéticas:
 - a. Lesión citogenética.
 - b. Duplicación de dosis.
 - c. Dosis significativa genéticamente.

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biologí (10^a ed.). Elsevier.


Período	Dosis aproximada (Sv)	Tiempo medio de supervivencia (días)	Signos y síntomas clínicos	Número estimado de CBCT dentales necesarios*	Evento posible asociado
Prodrómico	>1.0 Sv	180	Náuseas, vómitos, diarrea	>16,700 estudios	Accidentes radiológicos severos (ej. Tokaimura, Japón 1999)
Latente	1.0 – 100 Sv	-	Ninguno	16,700 – 1,670,000 estudios	Exposición accidental prolongada (trabajo con material radiactivo sin protección)
Hematológico	2.0 – 10.0 Sv	10 – 60	Náuseas, vómitos, diarrea, anemia, leucopenia, hemorragias, fiebre, infección	33,300 – 166,700 estudios	Supervivientes cercanos a zonas de explosiones nucleares
Gastrointestinal	10.0 – 50.0 Sv	4 – 10	lgual que el hematológico + trastorno electrolítico, letargo, fatiga, shock	166,700 – 833,300 estudios	Interior de reactor durante accidente nuclear severo (Chernóbil, 1986)
Sistema nervioso central	>50.0 Sv	0 – 3	lgual que el gastrointestinal + ataxia, edema, vasculitis sistémica, meningitis	>833,300 estudios	Exposición letal inmediata en el núcleo del reactor sin protección

Bushong, S. C. (2013). Manual de radiología para técnicos: Física, biología y protección radiológica (10ª ed.). Elsevier.
Información generada con asistencia de ChatGPT y revisada por el autor


EXPOSICIÓN ≈ 1 Gy	PERÍODO PRODRÓMICO	PERÍODO DE LATENCIA	ENFERMEDAD MANIFIESTA	
Accidente nuclear,	1 – 2 días	Semanas (1-5 Gy) Horas (50 Gy)		
	NÁUSEAS	4 semanas	SINDROME DE MUERTE. HEMATOLOGICA 2-10 Gy Recuperación SI, 2-4 semanas a seis meses.	
radioterapia médica, eventos de terrorismo, fluoroscopía.	VÓMITOS DIARREAS LEUCOPENIA	DIARREAS 3-5 dies	3-5 días	SINDROME DE MUERTE GASTROINTESTINAL 10-50 Gy Recuperación NO
		12 horas	SINDROME DE MUERTE NEUROLOGICA 50+ Gy Recuperación NO	

- Efectos deterministas (reacciones tisulares nocivas) debidos principalmente a la muerte/defectos en el funcionamiento de las células tras DOSIS elevadas.
- Efectos estocásticos, es decir, cáncer y efectos heredables implicando, bien el desarrollo de cáncer en los individuos expuestos debido a la mutación de células somáticas o una enfermedad heredable en su progenie debido a la mutación en células reproductoras (germinales).
- Existen efectos de aparición tardía que no son estocásticos si no determinísticos como las cataratas, necrosis tisular y esterilidad debido a que su aparición requiere una dosis umbral.

- S. Muerte Hematológica 2-10 Gy
- S. Muerte Gastrointestinal 10-50 Gy
- S. Muerte SNC 50+ Gy

Cataratas 0.5-2 Gy

Fibrosis 10-12 Gy

Esterilidad 0.15-6 Gy

Osteoradionecrosis 50+ Gy

Necrosis tisular 25-30+ Gy

EFECTO DETERMINISTA TARDÍO	DOSIS UMBRAL ESTIMADA (GY)	DESCRIPCIÓN / OBSERVACIONES	TRATAMIENTO / EVENTO / FUENTE PROBABLE
Cataratas (lente ocular)	0.5 – 2 Gy	Opacidad del cristalino, puede ser progresiva.	Radioterapia craneal, intervenciones fluoroscópicas prolongadas
Fibrosis	10 – 12 Gy	Engrosamiento y pérdida de elasticidad del tejido conectivo.	Radioterapia (cáncer de mama, cabeza y cuello
Necrosis tisular	25 – 30 Gy	Muerte irreversible del tejido irradiado.	Radioterapia mal planificada o sobredosificación local
Esterilidad temporal (hombres)	0.15 - 0.2 Gy	Azoospermia reversible.	Radioterapia pélvica, exposición accidental moderada
Esterilidad permanente (hombres)	>3.5 - 6 Gy	Daño irreversible a las células germinales.	Radioterapia testicular, accidentes nucleares
Esterilidad (mujeres)	2 - 3 Gy (edad- dependiente)	Mayor sensibilidad en mujeres jóvenes.	Radioterapia abdominopélvica
Radionecrosis ósea	>50 Gy (localizado)	Necrosis en huesos como mandíbula o pelvis.	Radioterapia de cabeza/cuello, braquiterapia
Radiodermitis crónica	10 – 20 Gy acumulada	Telangiectasias, ulceraciones, piel endurecida o atrófica.	Fluoroscopias repetidas, procedimientos cardíacos intervencionistas
Mielopatía (médula espinal)	50 – 70 Gy (local)	Parálisis irreversible por daño a la médula.	Radioterapia torácica o cervical cercana a la médula espinal

Información generada

Dosis absorbida (mGy)	Sistema afectado	Síntomas clínicos	Riesgo de muerte
100 – 500	Médula ósea (hematopoyético)	Disminución de glóbulos blancos, náuseas, fatiga, infección	Bajo si hay tratamiento
500 – 1000	Hematopoyético	Síndrome hematopoyético completo: fiebre, sangrados, infecciones	Moderado (10–50%)
1000 – 2000	Sistema gastrointestinal	Náuseas severas, vómitos, diarrea, deshidratación	Elevado sin soporte médico
2000 – 4000	Gastrointestinal / Hematopoyético	Síndrome GI severo, necrosis intestinal, sepsis	Alto (>50%)
> 4000	Sistema cardiovascular / nervioso	Convulsiones, colapso, edema cerebral, coma	Muy alto (>90–100%) en días
3000 - 6000 (local)	Piel	Eritema, depilación, descamación seca o húmeda	No aplica
6000 - 10000 (local)	Piel	Necrosis, ulceración	No aplica
500 - 1000 (local)	Cristalino del ojo	Catarata radiogénica (latente)	No aplica
300 – 800 (in útero)	Sistema nervioso del feto	Retardo mental, malformaciones (semana 8– 15)	No inmediato, riesgo futuro
> 1000 (in útero)	Desarrollo fetal	Aborto espontáneo (dosis temprana)	Posible

Evento / Condición	Contexto	Dosis absorbida (mGy)
Explosión nuclear	Guerra / Terrorismo	>4000 (cuerpo entero)
Fuga en reactor (ej. Chernóbil)	Nuclear civil	1000 - 16000
Radioterapia mal aplicada	Medicina	2000 - 10000 (local)
Errores en fluoroscopía prolongada	Diagnóstico / Intervencionismo	2000 – 5000 (piel)
Exposición ocupacional accidental	Laboratorio / Industria	500 – 3000 (segmentario)
Goiânia (fuente Cs-137)	Pérdida de fuente radiactiva	1000 - 6000
Terapia intraoperatoria mal controlada	Medicina	>10,000 (órgano)
PET/CT sin indicación en embarazada	Diagnóstico	100 – 500 (feto)
Irradiación de testículos sin blindaje	Ocupacional / error 500 – 1000	
Radiación en terroristas con fuente "sucia"	Intencional	1000 – 4000

<u> </u>			
Evento	Lugar	Dosis estimada (Gy / mSv)	Consecuencias principales
Bombas atómicas	Hiroshima y Nagasaki (1945)	1–4 Gy (a ≤2 km del epicentro)	Quemaduras, leucemia, otros cánceres, muertes agudas por síndrome de irradiación aguda.
Accidente de Chernóbil	Prípiat, Ucrania (1986)	0.25-16 Gy (liquidadores)	31 muertes agudas, miles de casos de cáncer tiroideo, contaminación ambiental extensa.
Accidente de Fukushima	Japón (2011)	< 0.1 Gy (≈100 mSv trabajadores expuestos)	Ninguna muerte por síndrome agudo, evacuaciones masivas, aumento en vigilancia médica.
Accidente de Goiania	Brasil (1987)	1–7 Gy (casos fatales), hasta 1000 mSv (otros)	4 muertes, más de 100 personas contaminadas, extensa descontaminación urbana.
Accidente de Kyshtym (Mayak)	Rusia (1957)	> 1 Gy (zonas cercanas)	Enfermedad por radiación aguda en cientos, evacuación, contaminación de ríos y suelos.
Radioterapia mal calibrada	Costa Rica (1996)	4.0-7.0 Gy (sobredosificación)	Al menos 13 muertes, más de 100 personas con lesiones graves por error médico.
Experimentos médicos en Utah	EE.UU. (1953– 1960s)	100–500 mSv (estimado, niños con tiroides)	Aumento de cáncer de tiroides en poblaciones cercanas a pruebas nucleares.
Incidente en Tokaimura	Japón (1999)	17 y 10 Gy (dos técnicos), 3 mSv (población)	Dos muertes, exposición accidental en planta de enriquecimiento de uranio.

Tabla de Comparación de Dosis en Estudios Radiográficos Dentales					
Dosis Absorbida (mGy)	Dosis Efectiva (mSv)	N° Est. Aproximado para Alcanzar Riesgo Potencial (>100 mSv)			
0.001 – 0.005 mGy	0.001 – 0.005 mSv	20,000 – 100,000 exposiciones			
0.01 – 0.03 mGy	0.004 – 0.030 mSv	3,300 – 25,000 exposiciones			
0.002 – 0.01 mGy	0.002 – 0.01 mSv	10,000 – 50,000 exposiciones			
0.1 – 0.3 mGy	0.02 – 0.2 mSv	500 – 5,000 exploraciones			
	Dosis Absorbida (mGy) 0.001 – 0.005 mGy 0.01 – 0.03 mGy 0.002 – 0.01 mGy	Dosis Absorbida (mGy) Dosis Efectiva (mSv) 0.001 – 0.005 mGy 0.001 – 0.005 mSv 0.01 – 0.03 mGy 0.004 – 0.030 mSv 0.002 – 0.01 mGy 0.002 – 0.01 mSv			

 En el caso del cáncer, los estudios epidemiológicos y experimentales proporcionan evidencia del riesgo de la radiación a dosis de alrededor de 100 mSv o menores aunque con incertidumbres. En el caso de enfermedades heredables, aunque no existe evidencia directa de los riesgos de la radiación en las personas, las observaciones experimentales argumentan convincentemente que esos riesgos para las futuras generaciones deberían estar incluidos en el sistema de protección.

CONCLUSIONES

- Los rayos X son producto de la aceleración e impacto de electrones dentro del cabezal.
- Los rayos X son partículas cargadas con energía (menor longitud de onda que la luz visible) lo que les confiere las características de penetración, ionización, efectos fotográficos/luminiscentes y la probabilidad de causar efectos biológicos.
- Las dos interacciones más importantes de los rayos X con la materia son el efecto fotoeléctrico y el efecto Compton, siendo el efecto fotoeléctrico el responsable de la formación de la imagen radiográfica y el segundo el responsable de la radiación dispersa.

CONCLUSIONES

- Los pilares fundamentales de la protección radiológica son el tiempo, la distancia y el blindaje.
- Las consecuencias de la exposición a radiaciones se pueden dividir según su temporalidad en inmediatos o tardíos, y según la presencia de dosis umbral en determinísticos y estocásticos.
- En radiología oral las dosis son mínimas por lo que su ejercicio es seguro para el paciente y para el operador.